Isolation and Identification of Efficient Strains of Native Sulfur Oxidizing Bacteria rom Warm-water Fish Farms in the Central Regions Mazandaran

Document Type : Research Paper

Authors

1 MSc Student, Tarbiat Modares University

2 Assistant professor., Dept. of Aquaculture, Faculty of Natural Resources and Marine Science, Tarbiat Modares University

3 Academic member, Soil and Water Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran

Abstract

This study was aimed to isolate and identify the most efficient native bacteria from warm-water fish farms of Mazandaran that can potentially oxidize hydrogen sulfide. After sampling the sediments and sediment pore water of fish farms in Fereydunkenar, Babol, Babolsar and Sari counties, enrichment and isolation carried out in three liquid culture media of Starkey, Postgate, and H-3 to increase the number of the desired microorganisms. After isolation based on morphological difference (in the above solid culture media), 27 isolates (14 autotrophic and 13 heterotrophic isolates) were purified. Then preliminary screening was performed based on pH decrease in Starkey liquid culture media, among which only 6 isolates were selected. In the next stage, the amount of thiosulfate consumption, sulfate production, and the density of bacteria in Starkey liquid culture media were measured to a more detailed evaluation of the ability of sulfur oxidation. Among the 6 isolates, isolates FH-13, FH-21, and FH-14 had the highest oxidation ability of thiosulfate ions (4053.79, 3104.5, and 2878.97 mg / l for 14 days) and sulfate ion production (2240, 965 and 490 mg / l) in the liquid culture medium. Molecular identification of these isolates was performed using the 16S rRNA gene sequencing method. The results showed that three isolates FH-14, FH-13, and FH-21 had 99.70, 100, and 99.80% of identity with the Thiobacillus thioparus HM173634, respectively. Based on the results of this study, these strains can be used as effective sulfur-oxidizing strains in the bioremediation process to remove hydrogen sulfide in warm-water fish farms.

Keywords


  1. بشارتی، ح. خسروی، ه. مستشاری، م. میرزاشاهی، ک. قادری، ج. و ذبیحی، ح. 1395. بررسی اثر تیوباسیلوس، گوگرد و فسفر بر شاخص های رشد ذرت (Zea mays L.) در برخی مناطق ایران. مجله تحقیقات کاربردی خاک. جلد 4، شماره 1، ص 113-103.
  2. بشارتی، ح. صالح راستین، ن. ملکوتی، م.ج. و علیزاده، ع. 1383. بررسی توان ماندگاری باکتری تیوباسیلوس بر روی چند نوع حامل مختلف. مجله علوم خاک و آب. جلد 18، شماره 2، ص 176-171.
  3. صادقی‌پور مروی، م. پور‌بابایی، ا.ع. علیخانی، ح. حیدری، ا. و منافی، ز. 1395. جداسازی و شناسایی باکتری‌های اکسید‌کننده گوگرد در خاک کشاورزی و بررسی عملکرد اکسایش گوگرد. مجله زیست‌شناسی میکروارگانیسم‌ها. جلد 6، شماره 22، ص 113-125.
  4. مجرد‌مغانلو، گ.م. فاتحی‌فرد، ا. و ساعدی، س. 1392. حذف سولفید هیدروژنی از فاضلاب صنعتی با استفاده از راکتور ایرلیفت بیوفیلمی سوسپانسیونی. نشریه مهندسی عمران و محیط زیست. جلد 43، شماره 4، ص 79-86.
  5. Abraham, T.J. Ghosh, S. Nagesh, T.S. and Sasmal, D. 2004. Distribution of bacteria involved in nitrogen and sulphur cycles in shrimp culture systems of west bengal, India. Aquaculture. 239: 275–288.
  6. Affonso, E.G. Polez, V.L.P. Correa, C.F. Mazon, A.F. Araujo, M.R.R. Moraes, G. and Rantin, F.T. 2004. Physiological responses to sulfide toxicity by The air-breathing catfish, Hoplosternum Littorale (Siluriformes Callichthyidae). Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology. 139: 251–257.
  7. Barbosa, V.L. Atkins, S.D. Barbosa, V.P. Burgess, J.E. and Stuetz, R.M. 2006. Characterization of Thiobacillus thioparus isolated from an activated sludge bioreactor used for hydrogen sulfide treatment. Journal of Applied Microbiology. 10: 1269–1281.
  8. Banciu, H.L. Sorokin, D.Y. Tourova, T.P. Galinski, E.A. Muntyan, M.S. Kuenen, J.G. and Muyzer, G. 2008. Influence of salts and pH on growth and activity of a novel facultatively alkaliphilic, extremely salt-tolerant, obligately chemolithoautotrophic sufur-oxidizing Gammaproteobacterium Thioalkalibacter halophilus gen. nov., sp. nov. from South-Western Siberian soda lakes. Extremophiles. 12: 391–404.
  9. Behera, B.C. Mishra, R.R. Dutta, S.K. and Thatoi, H.N. 2014a. Sulphur oxidizing bacteria in mangrove ecosystem, a review. African Journal of Biotechnology. 13: 2897–2907.
  10. Behera, B.C. Patra, M. Dutta, S.K. and Thatoi, H.N. 2014b. Isolation and characterisation of sulphur oxidising bacteria from mangrove soil of Mahanadi river delta and theirs sulphur oxidizing ability. Journal of Applied and Environmental Microbiology. 2: 1–5.
  11. Behera, B.C. Singh, S.K. Patra, M. Mishra, R.R. Sethi, B.K. Dutta, S.K. and Thatoi, H.N. 2016. Partial purification and characterisation of sulphur oxidase from Micrococcus sp and Klebsiella sp isolated from mangrove soils of Mahanadi river delta, Odisha, India. Universal Journal of Microbiology Research. 4: 66–78.
  12. Besharati, H. 2017. Effects of sulfur application and Thiobacillus inoculation on soil nutrient availability, wheat yield and plant nutrient concentration in calcareous soils with different calcium carbonate content. Journal of Plant Nutrition. 40: 447–456.
  13. Boyd, C.E. and Tucker, C.S. 2012. Pond aquaculture water quality management. Springer Science and Business Media. 2: 49–62.
  14. Brenner, D.J. Krieg, N.R. Staley, J.T. and Garrity Sc, D. 2005. Bergey's manual of systematic bacteriology, Volume 2: The proteobacteria, Part B: The gamma proteobacteria. Berlin.
  15. Chaudhary, S. Dhanker, R. and Tanvi, S.G. 2017. Characterization and optimization of culture conditions for sulphur oxidizing bacteria after isolation from rhizospheric mustard soil, decomposing sites and pit house. International Journal of Agricultural and Biosystems Engineering. 11: 427–431.
  16. Cho, K.S. Hirai, M. and Shoda, M. 1991. Degradation characteristics of hydrogen sulfide, methanethiol, mimethyl sulfide and dimethyl disulfide by Thiobacillus thioparus DW44 isolated from peat biofilter. Journal of Fermentation and Bioengineering. 71: 384–389.
  17. Donati, E. Curutchet, G. Pogliani, C. and Tedesco, P. 1996. Bioleaching of covellite using pure and mixed cultures of Thiobacillus ferrooxidans and Thiobacillus thiooxidans. Process Biochemistry. 31: 129–134.
  18. Holmer, M. and Storkholm, P. 2001. Sulphate reduction and sulphur cycling in lake sediments: a review. Freshwater Biology. 46: 431–451.
  19. Hutt, L.P. Huntemann, M. Clum, A. Pillay, M. Palaniappan, K. Varghese, N. and Shapiro, N. 2017. Permanent draft genome of Thiobacillus thioparus DSM 505 T, an obligately chemolithoautotrophic member of the betaproteobacteria. Standards in Genomic Sciences. 12: 10.
  20. Ito, T. Sugita, K. and Okabe, S. 2004. Isolation, characterization, and in situ detection of a novel chemolithoautotrophic sulfur-oxidizing bacterium in wastewater biofilms growing under microaerophilic conditions. Applied and Environmental Microbiology. 70: 3122–3129.
  21. Kang, X. Liu, S. and Ning, X. 2016. Reduced inorganic sulfur in sediments of the mariculture region of Sanggou bay, China. Aquaculture Environment Interactions. 8: 233–246.
  22. Krishnani, K.K. Gopikrishna, G. Pillai, S.M. and Gupta, B. 2010a. Abundance of suphure-oxidizing bacteria in coastal aquaculture using soxb gene analyses. Aquaculture Research. 41: 1290–1301.
  23. Lahav, O. Ritvo, G. Slijper, I. Hearne, G. and Cochva, M. 2004. The potential of using iron-oxide-rich soils for minimizing the detrimental effects of H2S in freshwater aquaculture systems. Aquaculture. 238: 263–281.
  24. Leefeldt, R.H. and Matin, A. 1980. Growth and physiology of Thiobacillus novellus under nutrient-limited mixotrophic conditions. Journal of Bacteriology. 142: 645–650.
  25. Madhuri, R.J. Saraswathi, M. Gowthami, K. Bhargavi, M. Divya, Y. and Deepika, V. 2019. Recent approaches in the production of novel enzymes from environmental samples by enrichment culture and metagenomic approach. In Recent Developments in Applied Microbiology and Biochemistry. 251–262.
  26. Makzum, S. Amoozegar, M. and Dastgheib, S. 2017. Isolation and identification of obligately chemolithoautotrophic, haloalkaliphilic bacterium Thioalkalivibrio sp. strain EMA and optimizing its thiosulfate removal activity in haloalkaliphilic condition. Biological Journal of Microorganism. 6: 15–29.
  27. Medium 81. DSMZ. List of media for microorganisms. 2011. Deutsche Sammlung von Mikroorganismen und Zellkulturen Gmb Germany.
  28. Muyzer, G. Kuenen, J.G. and Robertson, L.A. 2013. Colorless sulfur bacteria. The prokaryotes:Prokaryotic Physiology and Biochemistry. 555–588.
  29. Mirzaei, M. Amoabediny, G. Yazdian, F. Sheikhpour, M. Ebrahimi, E. and Zadeh, B.E.H. 2014. An immobilized Thiobacillus thioparus biosensing system for monitoring sulfide hydrogen; Optimized parameters in a bioreactor. Process Biochemistry. 49: 380–385.
  30. Nadella, R.K. Vaiyapuri, M. Kusunur, A.B. Joseph, T.C. Velayudhan, L.K. and Mothadaka, M.P. 2019. Isolation and characterization of sulphur oxidizing bacteria (Halothiobacillus sp.) from aquaculture farm soil. Journal of Environmental Biology. 40: 363–369.
  31. Ohba, H. and Owa, N. 2005. Isolation and identification of sulfur-oxidizing bacteria from the buried layer containing reduced sulfur compounds of A paddy field on Sado island in Niigata Prefecture. Bull Faculty of Agriculture, Niggata University. 58: 55–61.
  32. Pillay, T.V.R. 2008. Aquaculture and the Environment. John Wiley and Sons, New York.
  33. Postgate, J.R. 1966. Media for sulphur bacteria. Laboratory Practice. 15: 1239.
  34. Poulton, S.W. Krom, M.D. Rijn, J.V. and Raiswell, R. 2002. The use of hydrous iron oxides for the removal of hydrogen sulphide in aqueous systems. Water Research. 36: 825–834.
  35. Ranjit Kumar, N. Archana, K. K. Basha, K.A. Muthulakshmi, T. Joseph, T.C. and Prasad, M.M. 2018. Isolation and identification of sulphur oxidizing bacteria from freshwater fish farm soil. Fishery Technology. 55: 270–275.
  36. Rojas-Avelizapa, N.G. Gómez-Ramírez, M. Hernández-Gama, R. Aburto, J. and García de León, R. 2013. Isolation and selection of sulfur-oxidizing bacteria for the treatment of sulfur-containing hazardous wastes. Chemical and Biochemical Engineering Quarterly. 27: 109–117.
  37. Sridar, R. Veerender, K. Sivaji, M. and Gayathri, R. 2015. Genetic diversity of sulphur oxidizing bacteria from different ecosystems. Indian Journal of Biotechnology. 14: 72–80.
  38. Starkey, R.L. 1935. Products of the oxidation of thiosulfate by bacteria in mineral media. TheJournal of General Physiology. 18: 325–349.
  39. Suzuki, I. 1999. Oxidation of inorganic sulfur compounds: chemical and enzymatic reactions. Canadian Journal of Microbiology. 45: 97–105.
  40. Tamura, K. Stecher, G. Peterson, D. Filipski, A. and Kumar, S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution. 30: 2725–2729.
  41. Vlasceanu, L. Popa, R. and Kinkle, B.K. 1997. Characterization of Thiobacillus thioparus LV43 and its distribution in a chemoautotrophically based groundwater ecosystem. Journal of Applied and Environmental Microbiology. 63: 3123–3127.
  42. Weisburg, W.G. Barns, S.M. Pelletier, D.A. and Lane, D.J. 1991. 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology. 173: 697–703.
  43. Yousef, N. Mawad, A. Aldaby, E. and Hassanein, M. 2018. Isolation of sulfur oxidizing bacteria from polluted water and screening for their efficiency of sulfide oxidase production. Global NEST Journal. 20: 259-264.
  44. Zhang, L. De Schryver, P. De Gusseme, B. De Muynck, W. Boon, N. and Verstraete, W. 2008. Chemical and biological technologies for hydrogen sulfide emission control in sewer systems: a review. Water Research. 42: 1–12.
  45. Zhao, Y.G. Zheng, Y. Tian, W. Bai, J. Feng, G. Guo, L. and Gao, M. 2016. Enrichment and immobilization of sulfide removal microbiota applied for environmental biological remediation of aquaculture area. Environmental Pollution. 214: 307–313.
  46. Zhou, Q.G. Bo, F. Bo, Z.H. Xi, L. Jian, G. Fei, L.F. and Hua, C.X. 2007. Isolation of a strain of Acidithiobacillus caldus and its role in bioleaching of chalcopyrite. World Journal of Microbiology and Biotechnology. 23: 1217–1225.
  47. Zhuang, R. Lou, Y. Qiu, X. Zhao, Y. Qian, D. Yan, X. and Qian, L. 2017. Identification of a yeast strain able to oxidize and remove sulfide high efficiently. Applied Microbiology and Biotechnology. 101: 391–400.