Isolation and identification of indigenous saline soil exopolysaccharide-producing bacteria

Document Type : Research Paper

Authors

1 PhD student of Department of Soil Science, Islamic Azad University of Isfahan, Khorasgan Branch

2 Associate Professor of Microbiology, Department of Basic Medical Sciences, Isfahan Islamic Azad University Khorasgan Branch

3 Professor, Department of Soil Science, Isfahan Islamic Azad University Khorasgan Branch

4 Associate Professor, Department of Soil Science, Isfahan Islamic Azad University Khorasgan Branch

Abstract

Exopolysaccharides secreted by bacteria has an important role in bacterial resistance against stresses such as salinity. This study aimed to isolate and identify halotolerant bacteria with the most exopolysaccharide production potential of the soil and evaluate the production of exopolysaccharides in different salt concentrations. Soil samples were spread on nutrient agar ± %5 NaCl then among the salt tolerant colonies, the most tolerable salt concentration (MTC) of mucoid ones was isolated and the EPS production in the presence of (5%) salt concentrations was assayed. The nature of exopolysaccharide produced by superior strain was identified with FTIR Spectrometer and the exopolysaccharides production in higher concentrations of salt were determined by anthrone-sulfuric acid method. In the infrared spectrum of exopolysaccharide, the absorption peaks were attributed to the presence of carbohydrate compounds such as β-glucans and also to alcohol groups, phenols, carboxylic acids, carbonyl and alkyne. The exopolysaccharide production was significantly (Pvalue < 0.05) increased by increasing salt stress. According to the results, the strain no-7 with growth potential on the  25% salt and producing exopolysaccharides (0.168  g /L) in 24 hours was selected as a superior strain and according to 16S rDNA gene sequencing was identified as Citrobacter freundii ATHM38 and submitted to GenBank under the accession number KX553903. 

Keywords


  1. الیاسی، خ. ۱۳۸۱. اصلاح خاک­های شور و سدیمی )مدیریت خاک وآب(. انتشارات جهاد دانشگاهی ارومیه واحد آذربایجان غربی. ۳۲۰صفحه.
  2. آموزگار، م ع؛ آشنگرف، م. و ملک زاده، ف. 1386. جداسازی باکتری­های نمک دوست نسبی مقاوم به تلوریت از مناطق مختلف ایران و اثر شوری و نمک­های سلنیوم بر روی این مقاومت. نشریه محیط شناسی. ج ۳۳، ش ۴۱، ص 24-17.
  3. زنجیربند، م. ۱۳۸۵. جداسازی و شناسایی بعضی از باکتری­های نمک دوست و بررسی اثر برخی عوامل مؤثر بر رشد آنها. پایان نامه کارشناسی ارشد میکروبیولوژی، دانشگاه اصفهان.
  4. تمرتاش؛ ر، شکریان، ف. و کارگر، م. ۱۳۸۹. بررسی تأثیر تنش شوری وخشکی بر ویژگی جوانه زنی بذر شبدر برسیم. مجلۀعلمی پژوهشی مرتع. ج ۴، ش 2، ص  288-297.
  5. کفیلزاده؛ ف، جاوید، ح. و کارگر، م. ۱۳۸۶. جداسازی میکروارگانیسم­های هالوفیل و هالوترانت از دریاچه بختگان و اثر فاکتور‌های فیزیکی – شیمیایی بر فراوانی آنها. مجله آب و فاضلاب. ج ۱۸، ش ۳، ص ۸۷-۸۱.
  6. ناهیدان، ص. و نوربخش، ف. ۱۳۸۸. تأثیر تاریخچه مدیریت کربن آلی بر برخی از خصوصیات بیولوژیکی خاک. مجموعه مقالات یازدهمین کنگره علوم خاک ایران، گرگان، ۲۱-۲۳ تیر. صفحه : ۸۶-۸۵.
  7. ساغروانی؛ ف، محمدیون، س. و محمدیون، ا. ح. ۱۳۹۰. نقش جاذب­های پلی ساکاریدی در کاهش خطرات زیست محیطی فاضلاب­های صنعتی. پنجمین همایش تخصصی مهندسی محیط زیست، تهران، دانشگاه تهران، دانشکده محیط زیست.
  8. Amellal, N., Bartoli, F., Villemin, G., Talouizte, A. and Heulin, T. 1999. Effects of inoculation of EPS producing Pantoea agglomerans on wheat rhizosphere aggregation. Plant and Soil. 211: 93-101.
  9. Anima, N. and Raghvan, C.M. 2014. Production and characterization of exopolysaccharides from the bacteria isolated from pharma lab sinks. International Journal of Pharmtech Research. 6(4):1301-1305.
  10. Arora, M., Kaushik, A., Rani, N. and Kaushik, C.P. 2010. Effect of cyanobacterial exopolysaccharides on salt stress alleviation and seed germination. Journal of Environmental Biology. 31(5): 701-704.
  11. Ashraf, M., Hasnain, S. and Hussain, F. 2005. Exopolysaccharides (exopolysaccharide) producing biofilm bacteria in improving physicochemical characteristics of the salt affected soils. Proceedings of the International Conference on Environmentally Sustainable Development.
  12. Breierova, E., Hromadkova,  Z., Stratilova, E., Sasinkova, V. and Ebringerova, A. 2005. Effect of salt stress on the production and properties of extracellular polysaccharides produced by Cryptococcus laurentii. Zeitschrift Fur Naturforschung C. 60(5-6):444-50.
  13. Canfora, L., Bacci, G., Pinzari, F., Lo Papa, G., Dazzi, C. and Benedetti, A. 2015. Salinity and bacterial diversity: to what extent does the concentration of salt affect the bacterial community in a saline soil. Applied Soil Ecology. 93: 120–129.
  14. Cappuccino, J. and Sherman, N. 1996. Microbiology (a laboratory manual). 1th edn, New York: Benjamin, Cumming Publishing Company INC.
  15. Chan, G.F., Noor Aini, A.R., Lee suan, C., Noor zarini, A.l., Nasiri, R. and Ikubar, M.R. 2012. Communal microaerophilic-aerobic biodegradation of Amaranth by novel NAR-2 bacterial consortium. Bioresource Technology. 105:48 –59.
  16. Chunhui, L., Lu, J., Lu, L., Liu, L., Wang, F. and Xiao, M. 2010. Isolation, structural characterization and immunological activity of an exopolysaccharide produced by Bacillus licheniformis8-37-0-1. Bioresource Technology. 101: 5528–5533.
  17. Ghods, S., Sims, I.M., Moradali, M.F. and Rehm, B.H.A. 2015. Bactericidal compounds growth of the plant pathogen Pseudomonas syringae pv. Actinidiae, which forms biofilms composed of a novel exopolysaccharide. Applied and Environmental Microbiology. 81: 4026- 4036.
  18. Jindal, N., Singh, D.P. and Khattar, J.I.S. 2011. Kinetics and physico-chemical characterization of exopolysaccharides produced by the cyanobacterium Oscillatoriaformosa. World Journal of Microbiology & Biotechnology. 27: 2139-2146.
  19. Kreig, N. and Holt, J.G. 1989. Bergey s manual of systemic bacteriology. 2th edn, New York : Williams and Wilkins, 722 p.
  20. Larpin, S., Sauvageot, N.S., Pichereau, V., Laplace, J.M. and Auffray, Y.k. 2002. Biosynthesis of Exopolysaccharide by Bacillus licheniformis Strain Isolated from Ropy Cider. International Journal of Food Microbiology. 77:1-9.
  21. Looijesteijn, P.L., Trapet, L., De Vries, E., Abee, T. and Hugenholtz, J. 2001. Physiological function of exopolysaccharides produced by lactococcus lactis. International Journal of Food Microbiology. 64:71-80.
  22. Madueno, L., Coppootelli, B.M., Alvarez, H.M. and Morelli, I.S. 2011. Isolation and characterization of indigenous soil bacteria for bioaugmentation of PAH contaminated soil of semiarid Patagonia, Argentina. International Biodeterioration and Biodegradation. 65: 345-351.
  23. Mancuso Nichols., C.A., Garon, S., Bowman, J.P., Raguenes, G. and Guezennec, J. 2004. Production of exopolysaccharides by Antarctic marine bacterial isolates. Journal of Applied Microbiology. 96(5): 1057-1066.
  24. Margesin, R. and Schinner, F. 2001. Potential of halotolerant and halophilic microorganisms for biotechnology.Extremophiles. 5:73–83.
  25. McCready, R.M., Guggolz, J., Silviera, V. and Owens, H.S. 1950. Determination of starch and amylase in vegetables. Analytical chemistry. 22: 1156-1158.  
  26. Nemat, M.A., Azza, S.T., Magdi, T.A. and Magdy, A .2012. Ameliorate of Environmental Salt Stress on the Growth of Zea mays L. Plants By Exopolysaccharides Producing Bacteria. Journal of Applied Sciences Research. 8(4): 2033-2044.
  27. Sheng, G.P., Yu, H.Q. and Yue, Z. 2006. Factors influencing the production of extracellular polymeric substances by Rhodopseudomonas acidophila. International Biodeterioration & Biodegradation. 58: 89-93.
  28. Welman, A.D. and Maddox, I.S. 2009. Exopolysaccharides from lactic acid bacteria: perspectives and challenges. Trends in Biotechnology. 21(6): 268-274.