Effect of phosphate solubilizing bacterium, vermicompost and phosphate sources on growth of lettuce in a calcareous soil

Document Type : Research Paper

Authors

1 M.Sc. Graduate, Department. of Soil Sciences, College of Agriculture Shiraz University

2 Associate Professor., Department. of Soil Sciences, College of Agriculture Shiraz University

3 Professor., Department. of Soil Sciences, College of Agriculture Shiraz University

Abstract

Co-application of biological fertilizers and phosphate sources have greatly considered in calcareous soilsin recent years. In order to study the effect of phosphate solubilizing bacterium (PSB), phosphate sources and vermicompost on some growth characteristics of lettuce (cv. Ferdos), a greenhouse experiment was conducted with factorial arrangement in a completely randomized design with three replications and three factors. Factors consisted of two levels of phosphate solubilizing bacterium (Pseudomonas flouresence) (with and without inoculation), two levels of vermicompost (0 and 1% w/w) and four phosphate sources (control, rock phosphate, tricalcium phosphate (TCP) and triple super phosphate at 25 mg P kg-1 soil). Biological fertilizers significantly increased shoot fresh and dry weights (SFDW), but they didn’t have remarkable effect on lettuce height. Application of rock phosphate and tricalcium phosphate (TCP) increased dry and fresh weight, respectively. Application of triple super phosphate significantly increased SFDW and lettuce height. Co-application treatments of bacterium, vermicompost and phosphate sources (except super phosphate) significantly increased SFDW, leave numbers and phosphorus concentration of lettuce. Overall, the results indicated that phosphorus chemical fertilizers can be replaced by co-application of insoluble phosphate and biological fertilizers.

Keywords


  1. ابطحی، ع.، کریمیان، ن.ع.، و صلحی، م. 1370 . گزارش مطالعات خاکشناسی نیمه تفصیلی اراضی منطقه باجگاه- استان فارس، بخش خاکشناسی، دانشکده کشاورزی. دانشگاه شیراز.
  2. رضوانی، م.، افشنگ، ب.، قلی زاده، ع. و زعفریان، ف. 1390. ارزیابی تاثیر قارچ میکوریزا و منابع مختلف فسفر بر رشد و جذب فسفر در سویا (Glycine max (L.) Merr.). مجله مدیریت خاک و تولید پایدار 1(2): 118-97.
  3. روستا، ح.م.، باقری، و. و منظری توکلی. م.، 1392. اثر تنش بی­کربنات سدیم بر خصوصیات رشدی و فیزیولوژیکی کاهو، آمارانت و پیچک آبی تحت سیستم آبکشت. مجله تنش­های محیطی در علوم زراعی 6(2): 182-171.
  4. سلیم پور، س.، خاوازی، ک.، نادیان، ح. و بشارتی، ح. 1389. تأثیر خاک فسفات همراه با گوگرد و ریز جانداران بر عملکرد و ترکیب شیمیایی کلزا. مجله پژوهش­های خاک 24(1): 19-10.
  5. عراقی، م.م.، باغبانی مهماندار، ف. و محمدی، ر. 1390، بررسی اثرمحرک رشدی جدایه­های قارچ Trichoderma harzianum روی کاهو (Lactuca sativa) و فلفل (Capsicu annuum). فصلنامه علمی-پژوهشی گیاه و زیست بوم (ویژه نامه) 7(2-27): 68-57.
  6. کرمی ابوالوردی، ش. 1393. گیاه پالایی یک خاک آهکی غنی شده با کادمیم به وسیله ذرت تلقیح شده با باکتری محرک رشد گیاه تحت شرایط تنش خشکی. پایان نامه کارشناسی ارشد، دانشکده کشاورزی، دانشگاه شیراز.
  7. محمدی، ش. و پوربابایی، ا.ع. 1391. مشخصات نویسندگان مقاله جداسازی و شناساییPSM روشی برای کاهش آلودگی زیست محیطی ناشی از کودهای فسفات. ششمین همایش ملی مهندسی محیط زیست، تهران، دانشگاه تهران، دانشکده محیط زیست.
  8. مریدی، آ. 1393. اثر تنش آبی، چای ورمی کمپوست و ورمی واش غنی شده با باکتری­های محرک رشد بر رشد ذرت و برخی ویژگی­های خاک پس از برداشت. پایان نامه کارشناسی ارشد، دانشکده کشاورزی، دانشگاه شیراز.
  9. نجفی، ن. و توفیقی، ح. 1389 . تأثیر کود فسفر بر رشد گیاه برنج، جذب فسفر و برخی عناصر در خاک­های شالیزاری شمال ایران در شرایط گلخانه­ای. یازدهمین کنگره علوم زراعت و اصلاح نباتات ایران، مرداد 1389، پژوهشکدة علوم محیطی، دانشگاه شهید بهشتی تهران 2810-2807.
  10. یزدانی مطلق، ن.، ریحانی تبار، ع.، نجفی، ن. و بنده حق، ع. 1393. تأثیر کاربرد همزمان نیتروژن و فسفر بر ویژگی­های زراعی گیاه برنج در شرایط غرقاب و اشباع متناوب. نشریه دانش آب و خاک 24(3): 160-143.
  11. Alexander, D. B., and D. A. Zuberer. 1991. Use of chrome azurol S reagents to evaluate sidrophore production by rhizosphere bacteria. Biology and Fertility of Soils 12: 39-45.
  12. Anzuay, M. S., Ludueña L. M., Angelini J. G., Fabra, A. and Taurian T. 2015. Beneficial effects of native phosphate solubilizing bacteria on peanut (Arachis hypogaea L) growth and phosphorus acquisition. Symbiosis 66: 89-97.
  13. Arancon N.Q. Edwards, C.A. Bierman, P. Metzger, J.D. and Lucht, C. 2005. Effects of vermicomposts produced from cattle manure, food waste and paper waste on the growth and yield of peppers in the field. Pedobiologia 49(4): 297-306.
  14. Barker A.V. and Bryson, G.M. 2006. Phosphorus. p. 21–50. In: Barker, A.V. and Pilbeam, D.J. (ed.) Handbook of Plant Nutrition. Boca Raton, FL: CRC Press.
  15. Bremner, J.M., 1996. Nitrogen-Total. p: 1085-1121. In. Sparks, D.L. (ed.). Methods of Soil Analysis, Part 3. ASA and SSSA, Madison, WI.
  16. Bustamante, M.A. Paredes, C. Moral, R. Agullo, E. Perez-Murcia, M.D. and Abad, M. 2008. Composts from distillery wastes as peat substitutes for transplant production. Resources, Conservation and Recycling 52: 792-799.
  17. Chapman, H.D. and Pratt, D.F. 1961. p. 62-66. Methods of analysis for soil, plant and water. The University of California's Division of Agricultural Science.
  18. Edwards, C.A. and Burrows, I. 1988. The potential of earthworm composts as plant growth media. p. 211-220. In: Neuhauser, C.A. (ed.) Earthworms in Environmental and Waste Management. SPB Academic Publishing b.v. The Netherlands.
  19. Fasciglione, G. MCasanovas, E. Yommi, A. Sueldo, R.J. and Barassi, C.A. 2012. Azospirillum improves lettuce growth and transplant under saline conditions. Journal of the Science of Food and Agriculture 92: 2518-2523.
  20. Gee. G.W. and Bauder, J.W. 1986. Particle size analysis. p. 383-411. In A. Klute (ed.), Methods of Soil Analysis. Part 1. 2nd Ed. Physical and Mineralogical Methods. Am. Soc. Agron. Madison, WI.
  21. Glick, B.R. Changping, L. Sibdas, G. and Dumbroff, E.B. 1997. Early development of canola seedlings in the presence of the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2. Soil Biology and Biochemistry 29: 1233-1239.
  22. Goldstein, A.H. 1995. Recent progress in understanding the molecular genetics and biochemistry of calcium phosphate solubilization by gram negative bacteria. Biological Agriculture and Horticulture 12: 185-193.
  23. Grantlipp, A.E.  And Goodall, D.W. 1957. Nutrient interactions and deficiency diagnosis in the lettuce. Australian Journal of Biological Sciences 11(1): 30-44.
  24. Hall, J.A. Pierson, D. Ghosh, S. and Glick, B.R. 1996. Root elongation in various agronomic crops by the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Israel Journal of Plant Sciences 44: 37-42.
  25. Jones, J.B.J. 1998. Phosphorus toxicity in tomato plants: when and how does it occur? Communications in Soil Science and Plant Analysis 29: 1779-1784.
  26. Kloepper J.W. 1994. Plant growth promoting bacteria (other systems). p. 137-54. In: Okon, J. (ed). Azospirillum/Plant Association. Boca Raton, FL: CRC Press.
  27. Kohler. J. Caravaca, F. Carrasco, L. and Roldan, A. 2007. Interaction between a plant growth-promoting rhizobacterium, an AM fungus and a phosphate-solubilizing fungus in the rhizosphere of Lactuca sativa. Applied Soil Ecology 35: 480-487.
  28. León, A.P. Martín, J.P. and Chiesa, A. 2012. Vermicompost application and growth patterns of Lettuce (Lactuca sativa L.). Agricultura Tropica et Subtropica 45(3): 134-139.
  29. Lifshitz, R. Klopper, J.W. Kozlowski, M. Simonson, C. Carlson, J. Tipping, E.M. and Zalesca, I. 1987. Growth promotion of canola (rapeseed) seedling by a strain of Pseudomonas putida under gnotobiotic conditions. Canadian Journal of Microbiology 33: 390-395.
  30. Lindsay. W.L. and Norvell, W.A. 1978. Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Science Society of America Journal 42: 421-428.
  31. Llorach, R. Martínez-Sanchez, A. Tomas-Barberan, F.A. Gil, M.I. and Ferreres, F.A. 2008. Characterisation of polyphenols and antioxidant properties of five lettuce varieties and escarole. Food Chemistry 108: 1028-1038.
  32. Marchi, E.C.S. Marchi, G. Silva, C.A. Dias, B.O. and Alvarenga, M.A.R. 2015. Lettuce growth characteristics as affected by fertilizers, liming, and a soil conditioner. Journal of Horticulture and Forestry 7(3): 65-72.
  33. Marulanda-Aguirre, A. Azcon, R. Ruiz-Lozano, J.M. and Aroca, R. 2007. Differential effects of a Bacillus megaterium strain on Lactuca sativa plant growth depending on the origin of the arbuscular mycorrhizal fungus co inoculated: physiologic and biochemical traits. Journal of Plant Growth Regulation 27: 10-18.
  34. McCauley, A. Jones, C. and Jacobsen, J. 2011. Plant Nutrient Functions and Deficiency and Toxicity Symptoms. Nutrient Management Module, 9. Montana State University.
  35. Muhammad Ali, A. Griffiths, J. Williams, K.P. and Jones, D.L. 2007. Evaluating the growth characteristics of lettuce in vermicompost and green waste compost. European Journal of Soil Biology 43: 316-319.
  36. Murty, M.G. and Ladha, J.K. 1988. Influence of Azospirillum inoculation on the mineral uptake and growth of rice under hydroponic conditions. Plant and Soil. 108: 281-285.
  37. Nelson, D.W. and Sommers, L.E. 1996. Total carbon, organic carbon, and organic matter. p. 961-1010. In: Page, A.L. et al., (ed.). Methods of Soil Analysis, Part 2, 2nd ed. American Society Agronomy. Inc. Madison, WI.
  38. Noumavo, P.A. Kochoni, E. Didagbé, Y.O. Adjanohoun, A. Allagbé, M. Sikirou, R. Gachomo, E.W. Kotchoni, S.O. and Baba-Moussa, L. 2013. Effect of different plant growth promoting rhizobacteria on maize seed germination and seedling development. American Journal of Plant Sciences 4: 1013-1021.
  39. Olsen, S.R. Cole, C.V. Watanabe, F.S. and Dean, L.A. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. United States Department of Agriculture Circular No. 939.
  40. Panhwar, Q.A. Radziah, O. Zaharah, A.R., Sariah, M. and Razi, I.M. 2010. Role of phosphate solubilizing bacteria on rock phosphate solubility and growth of aerobic rice. Search Results Journal of Environmental Biology 32: 607-612.
  41. Papathanasiou, k. Papadopoulos, I. Tsakiris I. and Tamoutsidis, E. 2012. Vermicompost as a soil supplement to improve growth, yield and quality of lettuce (Lactuca sativa L.). Journal of Food, Agriculture and Environment 10 (2): 677-682.
  42. Patten, C. L., and B. R. Glick. 2002. Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Applied Environmental Microbiology 68: 3795–3801.
  43. Rhoades, J.D. 1996. Salinity: Electrical conductivity and total dissolved solids. p. 417-436. In: Sparks, D.L. et al. (ed.). Methods of Soil Analysis. Part 3. 3rd ed. Am. Soc. Agron. Madison, WI.
  44. Rodriguez, H. and Fraga, R. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. A review. Biotechnology Advances 17: 319-339.
  45. Sainz, M.J. Taboada-Castro, M.T. and Vilariño, A. 1998. Growth, mineral nutrition and mycorrhizal colonization of red clover and cucumber plants grown in a soil amended with composted urban wastes. Plant and Soil. 205: 85–92.
  46. Sansamma, G. and Pillai, G.R. 2000. Effect of vermicompost on yield and economics of guinea grass (Panicum maximum) grown as an intercrop in coconut (Cocos nucifera) gardens. Indian Journal of Agronomy 45(4): 693-697.
  47. Sperber, J.I. 1958. The incidence of apatite-solubilizing organisms in the rhizosphere and soil. Australian Journal of Agricultural Research 9: 778-781.
  48. Summer, M.E. and Miller, W.P. 1996. Cation Exchange Capacity and Exchange Coefficient. p. 1201- 1229. In: Sparks, D.L. (ed.). Methods of Soil Analysis. SSSA, Madison, WI, USA.
  49. Thomas, G.W. 1996. Soil pH and soil acidity. p. 475- 490. In: Sparks, D.L. et al. (eds.) Methods of Soil Analysis. Part 3. 3rd ed. Am. Soc. Agron. Madison, WI.
  50. Van kauwenbergh, S.J. 2001. Overview of world phosphate rock production. International Meeting on Direct Application Rock Phosphate and Related Appropriate Technology-latest Development and Practical Experiences, July, 2001, Kuala Lampur, Malaysia.
  51. Zarei, M. Saleh-Rastin, N. Alikhani, H.A. and Aliasgharzadeh, N. 2006. Response of lentil to co-inoculation with phosphate solubilizing rhizobacteria strains and arbuscular mycorrhizal fungi. Journal of Plant Nutrition 29: 1509-1522.