Evaluation of the Effect of Rhizospheric and Non-Rhizospheric phosphate Solubilizing Bacteria on Improving the Growth Indices of Wheat under Salinity and Drought Stress

Document Type : Research Paper

Authors

1 Professor, Department of Soil Science and Engineering, Faculty of Agricultural Engineering and Technology, University of Tehran, Iran

2 Assistant Professor, Department of Soil Science and Engineering, Faculty of Agricultural Engineering and Technology, University of Tehran, Iran

3 MS.c Student, Department of Soil Science and Engineering, Faculty of Agricultural Engineering and Technology, University of Tehran, Iran

Abstract

Phosphate solubilizing bacteria application in dry-land farming is a strategy for decreasing the consumption of P- fertilizers and environmental stresses. In this study, 184 rhizosphere and non-rhizosphere bacterial isolates from Qazvin and Zanjan soils were screened for plant growth promoting traits and tolerance to salinity and drought stresses. According to the results, two rhizosphere bacterial strains (seudomonas sp. W7 and P. baetica W153) and two non-rhizospheric bacterial strains (Bacillus pumilus W72 and B. Safensis W73) were carefully chosen as superior strains. The effects of superior strains on wheat growth indices and plant P content were evaluated in a completely randomized design with factorial arrangement with three replications under drought stress (osmotic pressure -5 bar) and salinity (0.5% NaCl) stresses in vitro condition. Strains W7, W153, W72, W73 and B0 were considered as the first factor and the wheat cultivars Roshan (P-efficient cultivar) and Marvdasht (P-inefficient cultivar) were considered as the second factor. Rhizosphere bacteria were the best strains in the qualitative assessment (solubilization of organic and inorganic phosphate). Both groups of bacteria (rhizosphere and non-rhizosphere isolates) showed similar tolerances to salinity and drought stress. Growth indices of both wheat cultivars decreased under salinity and drought stress. The results showed that inoculation of two wheat cultivars with selected phosphate-solubilizing bacteria, while increasing the amount of soluble P in the growth medium, could significantly increase plant growth indices (30- 53%) and plant P uptake (14-32%) compared to non-inoculated treatments. The results also showed that non-rhizospheric bacteria (despite having lower phosphate solubilization ability) were more effective in solubilizing insoluble phosphate (rock phosphate) in plant growth medium than rhizosphere bacteria. In general, these results indicated that using phosphate solubilizing bacteria can reduce some of the limitations of wheat production in dry-land farming

  1. آذرمی ف, مظفری و, عباس‌زاده دهجی پ, حمیدپور, م. 1393. جداسازی باکتری‌های سودوموناس فلورسنس از ریزوسفر درختان پسته و تعیین برخی خصوصیات محرک رشدی آن‌ها. زیست شناسی خاک, 2(2), 173-186.
  2. امامی، ع. 1375 . روش های تجزیه گیاه جلد اول. نشریه شماره 982 ، موسسه تحقیقات خاک و آب، سازمان تحقیقات و آموزش کشاورزی، وزارت کشاورزی، تهران.
  3. ذبیحی، ح.، ثواقبی فیروزآبادی، غ.، خاوازی، ک. و ع. گنجعلی. 1388. بررسی تأثیر کاربرد سویه‌هایی از سودوموناس‌های فلورسنت بر عملکرد و اجزای عملکرد گندم در سطوح مختلف شوری خاک. آب و خاک، 23 (1)، 199-208.‎
  4. مومنی، ع . 1389. پراکنش جغرافیائی و سطوح شوری منابع خاک ایران. پژوهش های خاک، شماره 3، ص 15-1.
  5. علی احیایی، م.، و ع.ا. بهبهانی زاده.1372. شرح روش های تجزیه شیمیایی خاک (جلد اول). نشریه 893 ، موسسه تحقیقات خاک و آب، سازمان تحقیقات و آموزش کشاورزی، وزارت کشاورزی، تهران.
  6. Adesemoye, A.O., Kloepper, J.W., 2009. Plant–microbes interactions in enhanced fertilizer-use efficiency. Applied Microbiology and Biotechnology 85, 1-12.
  7. Ali, S.Z., Sandhya, V., Rao, L.V., 2014. Isolation and characterization of drought-tolerant ACC deaminase and exopolysaccharide-producing fluorescent Pseudomonas sp. Annals of Microbiology 64, 493-502.
  8. Bashan, Y., Kamnev, A.A., de-Bashan, L.E., 2013. Tricalcium phosphate is inappropriate as a universal selection factor for isolating and testing phosphate-solubilizing bacteria that enhance plant growth: a proposal for an alternative procedure. Biology and Fertility of Soils 49, 465-479.
  9. Budak, H., Kantar, M., Yucebilgili Kurtoglu, K., 2013. Drought tolerance in modern and wild wheat. The Scientific World Journal 2013.
  10. Chen, J.-H., 2006. The combined use of chemical and organic fertilizers and/or biofertilizer for crop growth and soil fertility. Land Development Department Bangkok Thailand, p. 20.
  11. Chen, L., Figueredo, A., Villani, H., Michajluk, J., Hungria, M., 2002. Diversity and symbiotic effectiveness of rhizobia isolated from field-grown soybean nodules in Paraguay. Biology and Fertility of Soils 35, 448-457.
  12. Deubel, A., Merbach, W., 2005. Influence of microorganisms on phosphorus bioavailability in soils, Microorganisms in soils: roles in genesis and functions. Springer, pp. 177-191.
  13. Donate-Correa, J., León-Barrios, M., Pérez-Galdona, R., 2005. Screening for plant growth-promoting rhizobacteria in Chamaecytisus proliferus (tagasaste), a forage tree-shrub legume endemic to the Canary Islands. Plant and Soil 266, 261-272.
  14. Edwards, U., Rogall, T., Blocker, H., Emde, M., Bottger, E.C., 1989. Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Research 17, 7843-7853.
  15. Egamberdieva, D., 2009. Alleviation of salt stress by plant growth regulators and IAA producing bacteria in wheat. Acta Physiologiae Plantarum 31, 861-864.
  16. Etesami, H., Alikhani, H.A., 2016. Co-inoculation with endophytic and rhizosphere bacteria allows reduced application rates of N-fertilizer for rice plant. Rhizosphere 2, 5-12.
  17. Etesami, H., Beattie, G.A., 2017. Plant-Microbe Interactions in Adaptation of Agricultural Crops to Abiotic Stress Conditions, Probiotics and Plant Health. Springer, pp. 163-200.
  18. Fageria, N.K., Moreira, A., 2011. 4 The Role of Mineral Nutrition on Root Growth of Crop Plants. Advances in Agronomy 110, 251-331.
  19. Giongo, A., Ambrosini, A., Vargas, L.K., Freire, J.R.J., Bodanese-Zanettini, M.H., Passaglia, L.M.P., 2008. Evaluation of genetic diversity of bradyrhizobia strains nodulating soybean [Glycine max (L.) Merrill] isolated from South Brazilian fields. Applied Soil Ecology 38, 261-269.
  20. Glick, B.R., 2014. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiological Research 169, 30-39.
  21. Grant, C.A., Flaten, D.N., Tomasiewicz, D.J., Sheppard, S.C., 2001. The importance of early season phosphorus nutrition. Canadian Journal of Plant Science 81, 211-224.
  22. Gulati, A., Sharma, N., Vyas, P., Sood, S., Rahi, P., Pathania, V., Prasad, R., 2010. Organic acid production and plant growth promotion as a function of phosphate solubilization by Acinetobacter rhizosphaerae strain BIHB 723 isolated from the cold deserts of the trans-Himalayas. Archives of Microbiology 192, 975-983.
  23. Han, H.-S., Lee, K.D., 2006. Effect of co-inoculation with phosphate and potassium solubilizing bacteria on mineral uptake and growth of pepper and cucumber. Plant Soil and Environment 52, 130.
  24. Iqbal Hussain, M., Naeem Asghar, H., Javed Akhtar, M., Arshad, M., 2013. Impact of phosphate solubilizing bacteria on growth and yield of maize. Soil & Environment 32.
  25. Kavamura, V.N., Santos, S.N., da Silva, J.L., Parma, M.M., Ávila, L.A., Visconti, A., Zucchi, T.D., Taketani, R.G., Andreote, F.D., de Melo, I.S., 2013. Screening of Brazilian cacti rhizobacteria for plant growth promotion under drought. Microbiological Research 168, 183-191.
  26. Khan, M.S., Zaidi, A., Ahmad, E., 2014. Mechanism of phosphate solubilization and physiological functions of phosphate-solubilizing microorganisms, Phosphate Solubilizing Microorganisms. Springer, pp. 31-62.
  27. Khan, M.S., Zaidi, A., Wani, P.A., Ahemad, M., Oves, M., 2009. Functional diversity among plant growth-promoting rhizobacteria: current status, Microbial Strategies for Crop Improvement. Springer, pp. 105-132.
  28. Naeem, A., Akhtar, M., Ahmad, W., 2013. Optimizing available phosphorus in calcareous soils fertilized with diammonium phosphate and phosphoric acid using Freundlich adsorption isotherm. The Scientific World Journal 2013.
  29. Orhan, F., Gulluce, M., 2015. Isolation and characterization of salt-tolerant bacterial strains in salt-affected soils of erzurum, Turkey. Geomicrobiology Journal 32, 521-529.
  30. Patten, C.L., Glick, B.R., 2002. Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Applied and Environmental Microbiology 68, 3795-3801.
  31. Penrose, D.M., Glick, B.R., 2003. Methods for isolating and characterizing ACC deaminase‐containing plant growth‐promoting rhizobacteria. Physiologia Plantarum 118, 10-15.
  32. Pereira, S.I.A., Castro, P.M.L., 2014. Phosphate-solubilizing rhizobacteria enhance Zea mays growth in agricultural P-deficient soils. Ecological Engineering 73, 526-535.
  33. Poonguzhali, S., Madhaiyan, M., Sa, T., 2008. Isolation and identification of phosphate solubilizing bacteria from chinese cabbage and their effect on growth and phosphorus utilization of plants. Journal of Microbiology and Biotechnology 18, 773-777.
  34. Pradhan, N., Sukla, L.B., 2006. Solubilization of inorganic phosphates by fungi isolated from agriculture soil. African Journal of Biotechnology 5.
  35. Rodríguez, H., Fraga, R., Gonzalez, T., Bashan, Y., 2006. Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant and Soil 287, 15-21.
  36. Ruppel, S., Franken, P., Witzel, K., 2013. Properties of the halophyte microbiome and their implications for plant salt tolerance. Functional Plant Biology 40, 940-951.
  37. Sánchez-Porro, C., Rafael, R., Soto-Ramírez, N., Márquez, M.C., Montalvo-Rodríguez, R., Ventosa, A., 2009. Description of Kushneria aurantia gen. nov., sp. nov., a novel member of the family Halomonadaceae, and a proposal for reclassification of Halomonas marisflavi as Kushneria marisflavi comb. nov., of Halomonas indalinina as Kushneria indalinina comb. nov. and of Halomonas avicenniae as Kushneria avicenniae comb. nov. International Journal of Systematic and Evolutionary Microbiology 59, 397-405.
  38. Schwyn, B., Neilands, J.B., 1987. Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry 160, 47-56.
  39. Shahab, S., Ahmed, N., 2008. Effect of various parameters on the efficiency of zinc phosphate solubilization by indigenous bacterial isolates. African Journal of Biotechnology 7.
  40. Sharma, S.B., Sayyed, R.Z., Trivedi, M.H., Gobi, T.A., 2013. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus 2, 587.
  41. Shedova, E., Lipasova, V., Velikodvorskaya, G., Ovadis, M., Chernin, L., Khmel, I., 2008. Phytase activity and its regulation in a rhizospheric strain of Serratia plymuthica. Folia Microbiologica 53, 110-114.
  42. Soleimani, R., Alikhani, H.A., Towfighi, H., Pourbabaei, A.A., Khavazi, K., 2016. Indole-3-Acetic Acid and 1-Aminocyclopropane-1-Carboxylate Deaminase-Producing Bacteria Alleviate Sodium Stress and Promote Wheat Growth. Iranian Journal of Science and Technology, Transactions A: Science, 1-12.
  43. Sperber, J.I., 1958. Solution of apatite by soil microorganisms producing organic acids. Australian journal of agricultural research 9, 782-787.
  44. Tiwari, S., Singh, P., Tiwari, R., Meena, K.K., Yandigeri, M., Singh, D.P., Arora, D.K., 2011. Salt-tolerant rhizobacteria-mediated induced tolerance in wheat (Triticum aestivum) and chemical diversity in rhizosphere enhance plant growth. Biology and Fertility of soils 47, 907.
  45. Tsavkelova, E.A., Klimova, S.Y., Cherdyntseva, T.A., Netrusov, A.I., 2006. Microbial producers of plant growth stimulators and their practical use: a review. Applied Biochemistry and Microbiology 42, 117-126.
  46. Upadhyay, S.K., Singh, D.P., Saikia, R., 2009. Genetic diversity of plant growth promoting rhizobacteria isolated from rhizospheric soil of wheat under saline condition. Current Microbiology 59, 489-496.
  47. Vyas, P., Gulati, A., 2009. Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent Pseudomonas. BMC Microbiology 9, 174.
  48. Xie, H., Pasternak, J.J., Glick, B.R., 1996. Isolation and characterization of mutants of the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2 that overproduce indoleacetic acid. Current Microbiology 32, 67-71.
  49. Yang, C.H., Chai, Q., Huang, G.B., 2010. Root distribution and yield responses of wheat/maize intercropping to alternate irrigation in the arid areas of northwest China. Plant Soil Environ 56, 253-262.
  50. Yu, X., Liu, X., Zhu, T.H., Liu, G.H., Mao, C., 2011. Isolation and characterization of phosphate-solubilizing bacteria from walnut and their effect on growth and phosphorus mobilization. Biology and Fertility of Soils 47, 437-446.
  51. Zhu, F., Qu, L., Hong, X., Sun, X., 2011. Isolation and characterization of a phosphate-solubilizing halophilic bacterium Kushneria sp. YCWA18 from Daqiao Saltern on the coast of Yellow Sea of China. Evidence-Based Complementary and Alternative Medicine 2011.