The Abundance and Biodiversity of Soil Macrofauna in Outside and Inside of Coppice Shoots of Persian oak (Quercus persica) in Zagros Coppice Forests

Document Type : Research Paper

Authors

1 M.Sc. graduate, Department of Forestry, Faculty of Natural Resources, University of Guilan, I. R. Iran

2 Corresponding Author, Associate professor, Department of Forestry, Faculty of Natural Resources, University of Guilan, I. R. Iran

3 Assistant Professor, Faculty of natural resources, Razi University of Kermanshsh

Abstract

Soil macrofauna, as an important and effective biological component of soil ecosystem, are critical in soil processes and functions. Because of importance of Zagros coppice forests and the role of macrofauna in forest soils, this study was carried out in order to evaluate the diversity of soil macrofauna in coppice of one section in Zagros forests located in Kermanshah province. In this study, 40 hectares of Oak coppice forest were selected and two treatments included inside and outside of coppice shoot were considered on the base of different conditions between two ecological niches. Twenty plots were selected in each treatment and soil profiles were prepared with dimensions of 50× 50 cm and the depth of 20 cm and the macrofauna were manually collected.  Four properties of coppice shoot were measured (number of coppice, crown area, smaller diameter of coppice and height coppice shoot). The results of statistical analysis showed that the abundance and diversity of soil macrofauna as well as some soil properties of the inside of the coppice shoot significantly changed (confidence level of 95%) compare to outside treatment. Increasing of population and the diversity of macrofauna inside the coppice shoot showed positive significant correlation with the depth of litter and crown area and that was due to increasing of organic matter, nutrient concentration and organisms access to food sources in the litter as well as in the inside of the coppice shoot. On the basis of the results of this study, we can sign to the influence of the coppice shoot as a microsite which create proper condition for living and presence of the terrestrial organism. 

Keywords


  1. بیرانوند، م. کوچ، ی. 1395. اثر گونه­های درختی پهن برگ بر فراوانی و تنوع کرم­های خاکی در اکوسیستم جنگلی جلگه­ای. نشریه زیست شناسی خاک. (1): 15-26.
  2. پوررضا، م. حسینی، س. م. صفری سنجابی، ع. ا. متینی زاده، م و  دیک، و. 1392. اثر شدت آتش سوزی بر ماکروفون خاک در جنگل­های شاخه زاد بلوط ایرانی. مجله تحقیقات جنگل و صنوبر ایران. 21 (4): 741- 729.
  3. تبادکانی، س. م. 1388. سیستماتیک حشرات. انتشارات جهاد دانشگاهی تهران. 509.
  4. زرین کفش، م. 1371. خاکشناسی کاربردی، ارزیابی و مورفولوژی و تجزیه­های کمی خاک – آب – گیاه، انتشارات دانشگاه تهران شماره 1955. 245.
  5. صالحی، ع. زرین کفش، م. زاهدی امیری، ق و مرویی مهاجر، م.ر 1384. بررسی تغییرات خصوصیات فیزیکی و شیمیایی خاک در ارتباط با گروهای اکولوژیک درختی در سری نم خانه جنگل خیرود کنار. مجله منابع طبیعی ایران. 58(3).
  6. صالحی، ع. نورمحمدی، ا. 1390. تأثیر قرق و خراش سطحی بر خصوصیات خاک و زادآوری در جنگل­های زاگرس مرکزی؛ مطالعه موردی: جنگل­های شهرستان الشتر. نشریه علمی – پژوهشی جنگل و فرآورده­های چوب. 65(3): 315-325.
  7. صفری سنجانی، ع. ا. 1388. بیوشیمی و بیولوژی خاک( چاپ دوم). انتشارات دانشگاه بوعلی سینا. 520.
  8. صیاد، ا. غلامی، ش. عسکر پور، م.ر 2016. ارتباط تغییرات مکانی تنوع زیستی جانداران درشت خاکزی و تاج پوشش درختان در جنگل­های حاشیه رودخانه مارون. پژوهش­های آب و خاک. 30(4): 1158-1169.
  9. فتاحی، م. 1373. بررسی جنگل شناسی جنگل­های گاوزیان. پایان نامه کارشناسی ارشد جنگلداری. دانشکده منابع طبیعی دانشگاه تهران.129.
  10. مصداقی، م. 1384. بوم شناسی گیاهان. انتشارات جهاد دانشگاهی مشهد. 187. 
  11. Amini, M. R. Shataee Joybari, S. and Ghazanfari, H. 2009. Deforestation modeling and investigation on related physiographic and human factors using satellite images and GIS (Case study: Armerdeh forests of baneh). Iranian Journal of Forest and Poplar Research 16:431-443.
  12. Autunes, S.C. Pereira, R. Sousa, J.P. Santos, M.C. and Goncalves, F. 2008. Spatialand temporal distribution of litter arthropodas in different vegetation covers of Porto Santo Island (Maderia Archipelago, Portugal). European Journal of Soil Biology 44:45-56.
  13. Barens, B. U. Zak, D.R. Denton, S.R. and Spurr, S.H. 1998. Forest ecology. John Wiley & sons 376.
  14. Dufour, D.l. Cerda, H. Torres, F. Pizzoferrato, L. and Pimmentel, D. 2000. Theimportance of leaf and litter-feeding invertebrates as sources of animal protein for the Amazonian Amerindians. Proceedings for theRoyal Society of London. Series B. Biological Sciences 22: 2247-2252.
  15. Gillison, A.N. Jones, D.T. Susilo, F.X. and Bignell, D.E. 2003. Vegetation indicates diversity of soil macroinvertebrates: a case study with termites along a land-use intensification gradient in lowland Sumatra. Organisms Diversity and Evolution 3:111-126.
  16. Hofer, H. Hanagarth, W. Garcia, M. Martius, C. Franklin, E. Rombke, J. and Beck, l. 2001. Structure and function of soil fauna communities in Amazonian anthropogenic and ecosystems. European Journal of soil Biology 37:229-235.
  17. Invertebrate Classification Key. 2017. (Online). Available at https:// www.tes.com /teachingresource  /invertebrate – key – 6295138.
  18. Islam, M. A. Apostol, K.G. Jacobs, D.F. and Dumroese, R. K. 2009. Fertilization of Pinus resinosa seedlings: nutrient uptake, cold hardiness and morphological development. Annals of Forest Science 66:704-713.
  19. Joschko, M. Fox, C.A. Lentzsch, P. Kiesel, J. Hierold, W. Kruck, S. and Timmer j. 2006. Spatial analysis ofearthworm biodiversity at the regional scale. Agriculture Ecosystem and Environment 112: 367-380.
  20. Joschko, M. Gebbers R. Barkusky D. Rogasik J. Hohn W. Hierold W. Fox C.A. and Timmer J. 2009. Location-dependency of earthworm response to reduced tillage on sand soil. Soil and Tillage Research 102: 55-66.
  21. Mathieu, J. Grimaldi, M. Jouquet, P. Rouland, C. Lavelle, P. Desjardins, T. and Rossi, J. P. 2009. Spatial patterns of grasses influence soil macrofauna biodiversity in Amazonian pastures. Soil Biology and Biochemistry 41, 586-593.
  22. McLean, E.O. 1982. Soil pH and lime requirement: 199-224. In: Page, A.L. (ed.). Methods of soil analysis, Part 2. Chemical and microbiological properties. American Society of Agronomy, SSSA, Madison, WI, 1159.
  23. Mohammadnezhad Kiasari, Sh., 2007. Investigation on some biodiversitical characteristics (vegetable components& macro organisms) of natural and planted forests (hardwoods and softwoods) inDarab Kola Forests. Final report of research project, Published by Research Institute of Forests and Rangelands, Tehran, Iran, 87.
  24. Negrete-Yankelevich, S. Fragoso, c. Newton, A.C. Russell, G. and Heal, O.W. 2008. Specific characteristics of trees can determine the litter macroinvertebrate community and decomposition process below their canopies. Plant and Soil 307:83-97.
  25. Pashanasi, B. Lavelle, P. Alegre, J. and Charpentier, F. 1996. Effect of the endogeic earthworm Pontoscolex corethrurus on soil chemical characteristics and Plant growth in a low-input tropical agroecosystem. Soil Biology and Biochemistry 28:801-810.
  26. Pospiech, N. and Skalski, T. 2006. Factors influencing earthworm communities in post-industrial area of Krakow Soda Works. European Journal of Soil Biology 42:S278-S283.
  27. Pourreza, M. Hosseini, S. M. Safari Sinegani, A.A. Matinizadeh, M. and Dick, W.A. 2014a. Soil microbial activity in response to fire severity in Zagros oak (Quercus brantii Lindl.) forests, Iran, after one year. Geoderma 213:95-102.
  28. Pourreza, M. Hosseini, S. M. Safari Sinegani, A.A. Matinizadeh, M. and Alavai, S.J. 2014b. Herbaceous species diversity in relation to fire severity in Zagros oak forests, Iran. Journal of Forestry Research 25: 113−120.
  29. Scahrenbroch B. C. and Bockheim J. G. 2007. Impacts of forest gaps on soil properties and processes in old growth northern hardwood – hemlock forests. Plant Soil 294: 219 – 233.
  30. Sileshi, G. 2008. The excess-zero problem in soil animal count data and choice of appropriate models for statistical inference. Pedobiologia 52:1-17.
  31. Sileshi, G. and Mafongoya, P.L. 2006. Long – term effect of improved legume fallows on soil invertebrante macrofauna and maize yield in eastern Zambia. Agriculture Environment 115: 69- 78.
  32. Single, U.R. 1977. Relationship between the population density of soil microarthropods and mycoflora associated with litter and the total litter respiration on the floor of a sal forest in Varanasi, India. Ecological Bulletins Stockholm 25:463-470.
  33. Vasconcellos, R.L.F. Segat, J.C. Bonfim, J.A. Baretta, D. and Cardoso, E.J.B.N. 2013. Soil macrofauna as an indicator of soil quality in an undisturbed riparian forest and recovering sites of different ages. European Journal of Soil Biology 58: 105–112.
  34. Gongalsky, K. B. Gorshkova, I. A. Karpov, A. I. and Pokarzhevskii, A. D. 2008. Do boundaries of soil animal and plant communities coincide? A case study of a Mediterranean forest in Russia. European Journal of Soil Biology 44, 355-363.
  35. Walkley, A. and Black, I.A. 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science 37: 29-38.
  36. Wardle, D.A., 2002. Communities and Ecosystems: Linking the Aboveground and Belowground Components. Princeton University Press, New Jersey, USA.
  37. Weland, N. 2009. Diversity and trophic structure of the soil fauna and its influence on litter decomposition in deciduous forests with increasing tree species diversity. University of Gottingen, Gottingen 144.
  38. Yang, X. and Chen, J. 2009. Plant litter quality influences the contribution of soil fauna to litter decomposition in humid tropical forests, southwestern China. Soil Biology and Biochemistry 41:910-918.