Effects of Mycorrhizal Fungi, Growth Promoting Bacteria and Animal Manure on the Performance and Growth Characteristics of Rosa demascena in Layzangan Region of Fars Province

Document Type : Research Paper

Authors

1 Associate Professor of Soil and Water Research Department, Fars Agricultural and Natural Resources Research and Education Center, AREEO, Darab, Fars, Iran

2 Assistant Professor of Soil and Water Research Institute, AREEO, Karaj, Iran

3 Former M.Sc Student of Islamic Azad University, Darab, Fars, Iran

Abstract

Utilization of damask rose in sanitary and medicinal industries change it to valuable and economic goods. In order to investigate the effects of mycorrhizal fungi, plant growth-promoting bacteria and animal manure on yield and growth characteristics of damask rose, a factorial experiment in a randomized complete block design with four replications was performed in 2014 in Layzgan region of Darab city. The first factor was two levels of animal manure (0 and Two kg of per plant. The second factors was two levels of mycorrhizal fungi (without and with a mixture of three species of mycorrhizal fungi) and the third factor was four levels of plant growth-promoting bacteria (three strains of plant growth-promoting bacteria and no bacteria). The results showed that the effects of animal manure, inoculation with mycorrhizal fungi and inoculation with promoting bacteria had a significant (P < 0.01)) effect on growth characteristics and root colonization of damask rose. Pseudomonas fluorescens had a significant effect on all measured characteristics. Interaction effects of each three factors had the greatest influence on wet and dry weight of flower, height and width of plant, number of flowers pre plant and root colonization which respectively caused the increments of 91, 78.3, 57.3, 34.1, 77.2 and 32.7 percent to control.It was concluded that the simultaneous use of all factors had more positive effects on the improvement of measured characteristics. 

Keywords


  1. خرم­دل، س.، کوچکی، ع.، نصیری، م. و قربانی، ر. 1387. اثر کاربرد کودهای بیولوژیک بر شاخص­های رشدی سیاهدانه (Nigella stiva L.). مجله پژوهش­های زراعی ایران،  6(2): 294-285.
  2. فریدیان، ل.، خسروی، ه. ، فلاح، ع.ر. و لطف الهی، م.آ. 1394. بررسی تأثیر تلقیح باکتری­های محرک رشد بر شاخص­های رشد گوجه فرنگی. نشریه زیست­شناسی خاک، 3(1): 59-71.
  3. کوچکی، ع.، تبریزی، ل. و قربانی، ر. 1387. ارزیابی اثر کاربرد کودهای بیولوژیکی بر ویژگی­های رشد، عملکرد و خصوصیات کیفی زوفا (Hyssopus officinalis). مجله پژوهش­های زراعی ایران، 6 (1): 137-127.
  4. نیکبخت، ع. و کافی، م. 1389. گل محمدی ایران. انتشارات جهاد دانشگاهی واحد اصفهان، 150 صفحه.
  5. Amiri, A., Nikbakht, A. and Etemadi, N. 2015. Alleviation of drought stress on rose geranium (Pelargonium graveolens) in terms of antioxidant activity and secondry metabolites by mycorrhizal inoculation. Scientia Horticulture 197: 373-380.
  6. Arriagada, C.A., Herrera M.A. and Ocampo J.A. 2007. Beneficial effect of saprobe and arbuscular mycorrhizal fungi on growth of Eucalyptus globules co-cultured with Glycine max in soil contaminated with heavy metals. Journal of Environmental Management 84: 93-99.
  7. Atiyeh, R.M., Arancon, N., Edwards C.A. and Metzger, J.D. 2002. The influence of earth ormprocessed pig manure on the growth and productivity of marigolds. Bioresource Technology 81(2):103-108.
  8. Auge,R.M., Schekel, K.A and Wample,R.L. 1986. Osmotic adjustment in leaves of  VA mycorrhizal and nonmycorrhizal Rose plants in response to drought stress. Plant Physiology 82:765-770.
  9. Barea, J.M., Pozo, M.J., Azcon, R. and Azcon, C. 2005. Microbial co-operation in the rhizosphere. Journal of Experimental Botany 56(417): 1761-1778.
  10. Bashan, Y. and Holguin, G. 1997. Azospirillum-plant relationships: environmental and physiological advances (1990-1996), Can. J. Microbial 43:103-121.
  11. Belimov, A.A., Safronova, V.I. and Mimura, T. 2002. Response of spring rape (Brassica napus var. Olifera L.) to inoculation with plant growth promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate deaminase depends on nutrient status of the plant. Canadian Journal of Microbiology 48: 189-199.
  12. Boddey, R.M., De Oliviela, O.C., Urquiaga, S., Reis, V.M., De Oliviera, F.L., Baladan, V.L.D. and Doberiner, J. 1995. Biological nitrogen fixation association with sugarcane and rice: contributions and prospects for improvement. Plant and Soil 82:87-99.
  13. Bouyoucos, G.J. 1951. A recalibration of hydrometer method for making mechanical analysis of   soil. Agron. J. 43: 434-438.
  14. Davis, F.T., Sevenson,S.E., Cole, J.C., Phavaphutanon, L., Duray, S.A., Olalde-Portugal,V., Meier, C.E. and Bo, C.E.1996. Non-nutritional stress acclimation of mycorrhizal woody plants exposed to drought. Tree Physiology 16: 985-993.
  15. Garmendia, I. and Mangas, V.J.  2012. Application of arbuscular mycorrhizal fungi on the production of cut flower roses under commercial – like conditions. Spanish Journal of Agricultural Research 10: 166-174.
  16. Glick, B.R., C.L.,  Patten, G.,  Holguin, and Penrose, D.M. 1999. Biochemical and genetic mechanisms used by plant growth promoting bacteria. Imperial College Press London United Kingdom P267.
  17. Gosling, P., Hodge, A., Goodlass, G., and Bending, G.D. 2006. Arbuscular mycorrhiza fungi and organic farming. Agriculture, Ecosystems and Environment, 113: 17-35.
  18. Gupta, M.L., Prasad A., Ram, M. and Kumar, S. 2002. Effect of the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum on the essential oil yield related characters and nutrient acquisition in the crops of different cultivars of menthol mint (Mentha arvensis) under field conditions. Bioresour. Technol. 81(1):77-79.
  19. Kapoor, R., Giri, B. and  Mukergi,  K.G.  2004. Improved growth and essential oil yield and quality in Foeniculum vulgare Mill. on mycorrhizal inoculation supplemented with P-fertilizer. Bioresource Technology 93(3): 307-311.
  20. Khalesro, Sh., Ghalavand, A., Sefidkon, F. and Asgharzadeh, A. 2012. The effect of biological and organic inputs on quantity and quality of essential oil and some elements content of anise Pimpinella anisum L.). Iranian Journal of Medicinal and Aromatic Plants 27(4): 551-560.
  21. Knudson, D., Peterson, G.A.  and  Pratt, P.T. 1982. Lithium, sodium and potassium. pp: 225-246. In Page AL, et al. (eds.). Methodes of soil analysis. Part 2. 2nd ed., Am. Soc. Agron., Madison, WI.
  22. Lindsay, W.I., and Norvell, W.A. 1978. Development of a DTPA soil test for zinc, iron, anganese and copper. Soil Sci. Soc. Am. J. 42: 421- 448.
  23. Liu, X.B., Liu, J.D.,  Xing, B., Herbert, S.J.  and Zhang, X.Y. 2005. Effects of long-term continuos cropping, Tillage, and fertilization on soil carbon and nitrogen in Chinese mollisols. Commun. Soil Sci. Plant Anal. 36: 1229-1239.
  24. Mahato, P., Badoni, A. and Chauhan, J.S. 2009. Effect of Azotobacter and nitrogen on seed germination and early seedling growth in tomato. Researcher, 1(4), http://www.sciencepub.net, sciencepub@gmail.com.
  25. Murthy, N. K., Srinivasan, S. and Warrier, R. K. 1998. Effect of Azospirillum and Phosphobacterium in mproving seed germination and vigour of Amla. Journal of Non Timber Forest Products 6: 34-36.
  26. Olsen, S.R., Cole, C.V.,  Watanabe, F.S. and Dean, L.A. 1954. Estimation of available phosphorous in soil by extraction with sodium bicarbonate. USDA Circ. 939, U.S. Govern. Prin. Office, Washington, D.C., U.S.A.
  27. Panneerselvam, P., Mohandas, S.,  Saritha, B., Upreti, K., Poovarasan, K.,   Monnappa, A. and  Sulladmath, V. V. 2012. Glomus mosseae associated bacteria and their influence on stimulation of mycorrhizal colonization, sporulation, and growth promotion in guava (Psidium guajava L.) seedlings. Biological Agriculture & Horticulture 28(4): 267-279.
  28. Phillips,  J.M.  and Hayman, D.S. 1970. Improved procedures clearing roots and staining parasitic and vesicular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 55: 158-161.
  29. Pinior, A., Grunewaldt- Stocker, G., Alten, H.V. and Strasser, R.J. 2005. Mycorrhizal impact on drought stress tolerance of Roe plants probed by chlorophyll a fluorescence, prolin content and visual scoring. Mycorrhiza. 15:596-605.
  30. Ratti, N., Kumar, S., Verma, H.N. and Gautam, S.P. 2001. Improvement in bioavailability of tricalcium phosphate to Cymbopogon martinii var. motia by rhizobacteria, AMF and Azospirillum inoculation. Microbiological Research 156(2): 145-149.
  31. Rodelas, B.,  Lopez, J.G.,  Toledo, M.V.,  Pozo, C. and Salmeron, V. 1999. Influence of Rhizobium/Azotobacter and Rhizobium/Azospirillum combined inoculation on mineral composition of faba bean (Vicia faba L.). Biology and Fertility of Soils 29: 165-169.
  32. Sanhita-Gupta, D., Dilp, K., Arora, K.D. and Srivastava, K. 1995. Growth promotion of  tomato plants by rhizobacteria and imposition of energy stress on rhizobacteria solani. Soil Biology and Biochemistry 27: 1051-1058.
  33. Scagel, C.F. 2001. Cultivar specific effects of mycorrhizal fungi on the rooting of miniature Rose cutting. Journal of Environment and Horticulture 19:15-20.
  34. Shaalan, M.N. 2005. Influence of biofertilizers and chicken manure on growth, yield and seeds quality of (Nigella sativa L.) plants. Egyptian Journal of Agricultural Research 83: 811-828.
  35. Tennant, D. 1975. A test of a modified line intersect method of estimating root length. J. Ecol., 63: 995–1001.
  36. Walkley, A., and Black, T.A. 1934. An examination of the Deglijareff method for determining organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 37:29-38.