An Evaluation of the Influence of PGPR on Wheat Growth Indices under Saline Stress

Document Type : Research Paper

Authors

1 Associate Professor, Imam Khomeini International University, Iran

2 Assistant Professor, Soil&Water Research Institute, Iran

3 Soil&Water Research Institute, Iran

Abstract

Given the expanding trend of saline lands and the insufficiency of suitable fields for agricultural purposes, it is important to identify ways for increasing plant resistance to salinity. Using plant growth promoting rhizobacteria (PGPR) is one such approach. The following study aimed to analyze the effects of different PGPR bacteria and their combination on two wheat cultivars. The experiment was carried out using a randomized factorial design with three replications. The factors used included salt stress at three different levels (0.335 dS.m-1(control), 6 dS.m-1, and 14 dS.m-1 electrical conductivity of water). The second factor consisted of 8 biological treatments of  PGPR as follows: 1-(without bacteria (control), 2-­(Azosprillium lipoferum of), 3-Azotobacter choococcum 5), 4-(Pseudomonas fluorescens 169), 5-(Azosprillium lipoferum of + Azotobacter choococcum­5),­6-(Azosprillium lipoferum of + Pseudomonas­fluorescens­169), 7-(Azotobacter choococcum 5­+­Pseudomonas fluorescens­169),­8-­(Azosprillium lipoferum of­+­Azotobacter choococcum­5­+­Pseudomonas fluorescens 169). The experiment was carried out in the Soil and Water Research Institute greenhouse using a sand culture method. The two wheat cultivars used in the study included Kavir (resistant to salinity) and Qods (sensitive to salinity). Results showed that saline stress had a significant effect on the growth parameters related to the plant root and aerial organs (p<0.01). It was observed that an increase in the amount of salinity in the irrigation water led to a decrease in the average of the traits mentioned (p<0.01). Also, results showed that PGPR bacteria, especially those composed of different species had a positive impact under salt stress. Overall, most growth traits displayed a higher average in the case of seeds that had been inoculated with a combination of different bacteria. According to the results, these bacteria had positive effects on increasing growth parameters in the sensitive cultivar. The results obtained also pointed to a positive and significant influence for PGPR bacteria under salt stress and indicated that under different levels of salinity, inoculating seeds with the selected bacteria would lead to a reduction of the salinity-induced growth-retarding effects in the traits being studied. The PGPR bacteria were also able to significantly improve the plants’ growth parameters under salt stress. 

Keywords


  1. اخگر، ع.، ن. صالح راستین، ح. رحیمیان و م. ج. ملکوتی. 1387 جداسازی، شناسایی و بررسی کارایی باکتری­های ریزوسفری دارای توان تولید آنزیم ACC دآمیناز در کاهش اثرات تنش شوری بر رشد کلزا . رساله دکتری خاکشناسی، دانشگاه تهران. 163 صفحه.
  2. جلیلی، ف.، ک. خاوازی، ا. پذیرا و ه. اسدی رحمانی. 1386 بررسی تأثیر باکتری­های سودوموناس فلورسنت محرک رشد گیاه بر تعدیل اثرات مضر شوری در کشت کلزا.  رساله دکتری خاکشناسی، دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران. 124 صفحه.
  3. حمیدی، آ.، ا. اصغرزاده، ر. چوگان، م. دهقان شعار، ا. قلاوند و م. ج. ملکوتی. 1389. بررسی کاربرد کودهای ریزوباکتریایی افزاینده رشد گیاه (PGPR) در زراعت ذرت با نهاده کافی. مجله علوم محیطی. سال 4، شماره 4، صفحات 20-1.
  4. رخزادی، ا.، ا. اصغرزاده، ف. درویش، ق. نورمحمدی، ا. مجیدی و و. توشیح. 1387. ارزیابی اثر کودهای بیولوژیک آزوسپیریلوم، ازوتوباکتر، پسودوموناس و مزوریزوبیوم بر تجمع ماده­ی خشک و عملکرد نخود ). (Cicer arietinum L دهمین کنگره علوم زراعت و اصالح نباتات ایران
  5. عموآقایی، ر.، ا. مستأجران.، و گ. امتیازی. 1384. اثر آزوسپیریلوم و اسیدیته قلیائی آب آبیاری بر عملکرد دانه و میزان پروتئین ارقام زراعی گندم. مجله زیست شناسی. جلد 18، شماره 3، صفحات 256– 248.
  6. کافی، م.، م. لاهوتی، ا. زند.، ح. ر. شریفی و م. گلدانی. 1379. فیزیولوژی گیاهی (جلد اول). انتشارات جهاد دانشگاهی، مشهد. 456 صفحه.
  7. مستأجران، ا.، ر. عموآقایی و گ. امتیازی. 1384. اثر آزوسپیریلوم و اسیدیته قلیائی آب آبیاری بر عملکرد دانه و میزان پروتئین ارقام زراعی گندم. مجله زیست شناسی. جلد 18، شماره 3، صفحات 256– 248.
  8. مومنی، ع. 1389. پراکنش جغرافیائی و سطوح شوری منابع خاک ایران. پژوهش های خاک، شماره 3، صفحات 15-1
  9. Bacilio, M. Rodriguez, H. Moreno, M. Hernandez, J. P. and Bashan, Y. 2004. Mitigation of salt stress in wheat seedling by agfp-taged Azospirillum lipoferum. Biology and Fertiliity of Soils 40: 188-193
  10. Bhattarai, T. and Hess ,D. 1993. Yeild responses of Nepalese spring wheat (Triticum aestivum) cultivars to inculation with Azospirillum spp of Nepalese origin.Plant and Soil 151: 67-76.
  11. Bohn, W. 1979. Methods of studying root systems. Ecological Studies 33:188. Springer-Verlag, Berlin.
  12. Cheng, Z. Park, E. and Glick, B.R. 2007. 1-Aminocyclopropane-1- carboxylate deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt. Canadian Journal of Microbiology 53:912-918.
  13. Dobbelaere, S. Vanderleyden, J. and Okon, Y. 2003. Plant growth-promoting effects of diazotrophs in the rhizosphere. Critical Reviews in Plant Sciences 22: 107-149.
  14. Grichko, V. P. and Glick, B. R. 2001. Amelioration of flooding stress by ACC deaminase containing plant growth promoting bacteria. Plant Physiology and. Biochemestry 39:11-17.
  15. Han, H. S. and Lee, K. D. 2005. Plant growth promoting rhizobacteria effect on antioxidant status, photosynthesis, mineral uptake and growth of Lettuce under soil salinity. esearch Journal of Agriculture and Biological Sciences 1: 210-215.
  16. ICID (International Commission on Irrigation and Drainage). 2002. Irrigation and Food Production Information about ICID Network Countries [online]. Available at  http://icid.org/
  17. Klopper, J. W. 2003. A review of mechanisms for plant growth promoting by PGPR. 6th international PGPR workshop, 5-10 october 2003, calculla, India.
  18. Marcelis, L.F.M. and Hooijdonk, H.V. 1999. Effect of salinity on growth, water use and nutrient use in radish (raphanus sativus L.). journal of Plant and Soil 215: 57-64.
  19. Mayak, S. Tirosh, T. and Glick, B. G. 2004a. Plant Growth promoting bacteria confer  resistance in tomato plants salt stress. Plant Physiology and. Biochemestry 42:565-572.
  20. Mayak, S. T. Tirosh, T. and Glick, B. G.. 2004b. Plant growth promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Science 166:524-530.
  21. Moslemi, Z. Habibi, D. Asgharzadeh, A. 2011. Effects of super absorbent polymer and plant growth promoting rhizobacteria on yield and yield components of maize under drought stress and normal conditions. African Journal of Agriculture Research 6:4471–4476
  22. Nadeem, S. Zahir, Z.A. Naveed, M. and Arshad, M. 2007. Preliminary investigations on inducing salt tolerance in maize through ACC-deaminase activity.Canadian Journal of Microbiology 53 : 1141-1149.
  23. Newman, E. I. 1966. A method of estimating the total length of root in asampel. Journal of Applied Ecology 3:139-145.
  24. Pan. Y. Wu, L. J. Yu, Z. L. 2006. Effect of salt and drought stress on antioxidant enzymes activities and SOD isoenzymes of liquorice (Glycyrrhiza uralensis fisch). Plant Growth Regul 49: 157-165.
  25. Patten, C. L. and Glick, B. R. 2002. The Role of  Pseudomonas putida  Indoleacetic acid in development of the host plant root system. Applied and Enviromental Microbiology 68:3795-3801.
  26. Rai, S. N. and Gaur, A. C. 1988. Characterization of Azotobacter SPP. and effect of Azotobacter and Azospirillum as inoculant on the yield and N-Uptake of wheat crop. Plant Soil 109: 131-134.
  27. Rodelas, B. Lopez, J. G. Toledo, M. V. Pozo, C. and Salmeron, V. 1999. Influence of  Rhizobium/Azotobacter and  Rhizobium/Azospirillum combined inoculation on mineral composition of faba bean (Vicia faba L.). Biology and Fertiliity of Soils 29: 165–169.
  28. Saravanakumar, D. and Samiyappan, R. (2007). ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants. Jouranal of Applied Microbiology 102:1283-1292
  29. SAS Institute. 2011.  SAS/STAT Users Quide, version 9.2. SAS Institute. Inc. Cary, NC.
  30. Shukla, P. Agarwal, P. K. and Jha , B.  2011. Improved salinity tolerance of Arachis hypogaea (L.) by the interaction of halotolerant plant growth promoting rhizobacteria, Journal of Plant Growth Regulation. (DOI: 10.1007/s00344-011-9231-y).
  31. Taiz, L. and Zeiger, E. 2002. Plant Physiology, Third edition.
  32. Tilak, K. V. B. R. Singh,C. S. V. Roy, K. and Subba Rao, N. S. S. 1982. Azospirillum brasilense and Azotobacter chroococcum inoculum: effect on yield of maize (Zea mays L.) and sorghum (sorghum bicolor). Soil Biolgy &Biochemistry 14: 417-418.
  33. Yuen G. Y. and Schroth, M. N. 1986. Interaction of Pseudomonads  fluorescens strains E6 with  ornamental plants and its effect on the composition of root colonization microflora. Phytopathology 76:176-179.
  34. Zhang, M., L. Duan, X. Tian, Z. He, J. Li, B. Wang and Z. Li. 2006. Uniconazole-induced tolerance of soybean to water deficit stress in relation to changes in photosynthesis, hormones and antioxidant system. journal of Plant Physiology 164: 709-717.