Effect of phosphate solubilizing fluorescent pseudomonads on cadmium uptake by corn in contaminated soil

Document Type : Research Paper

Authors

1 Soil Science Department, Agriculture Faculty, Vali-e-Asr University of Rafsanjan

2 Former MSc. student of Vali-e-Asr University of Rafsanjan

3 Associate professor, Vali-e-Asr University of Rafsanjan

4 Professor, Vali-e-Asr University of Rafsanjan

Abstract

Cadmium, because of the long half a lifetime in the human and animal body and its toxicity, has great importance in agriculture. Today, plant growth-promoting rhizobacteria (PGPR) are used to increase the bioavailability and uptake of heavy metals in polluted soils. This study aimed to investigate the effectiveness of cadmium-tolerant fluorescent pseudomonads with inorganic phosphate solubilizing ability on the cadmium uptake by maize plants in contaminated soil. For this purpose, a greenhouse experiment was conducted in factorial based on a completely randomized design with four replications. Treatments were included four levels of bacteria (without bacteria (P0) and inoculation with three isolates P1, P169, P108) and four levels of time after planting (3, 6, 9, and 12 weeks). The soils were artificially spiked with cadmium (13 mg kg−1) as Cd(NO3)2. The results showed that the inoculation of maize with the selected isolates significantly increased shoot and root dry weights and shoot cadmium uptake in comparison to non-inoculated plants. The maximum shoot dry weight observed in plants inoculated with P169 and 12 weeks (31.22% more compared to non-inoculated plants). In the 12th week after planting, there was not any significant difference among P1, P108, and P169 isolates in shoot dry weights. P1 and P108 enhanced shoot dry weights by 23.81 and 22.21 percent in comparison to control, respectively. The maximum uptake of cadmium in plant shoot was found in inoculation with P169 and 12th week. In the 12th week, P169 increased cadmium uptake of the shoot by 150 percent in comparison to the control and 13.81 and 37.75 percent, compared to P1 and P108, respectively. Although all of the isolates used in the greenhouse experiment significantly increased cadmium uptake by maize plants but the effectiveness of P169 was more evident than other isolates. 

Keywords


  1. استوار، پ.، خاوازی، ک. و ملکوتی، م. ج. 1391. نقش باکتری‌های مفید خاکزی در افزایش کارایی پالایش سبز یک خاک آلوده به کادمیوم. مجله­ی پژوهش خاک (علوم خاک و آب)، جلد 1 (شماره­ی26)، 183-17.
  2. حمیدپور، م.، شیرانی، ح. و اخگر، ع . 1391. جذب سطحی کادمیوم روی کانی مونت­موریلونیت در حضور سیدروفور دسفرال. مجله آب و خاک دانشگاه فردوسی مشهد، جلد 26 (شماره )1، 42-52.
  3. خلیقی جمالآباد، ا. خارا، ج. تأثیر قارچ مایکوریزای آربوسکولار بر روی تنش اکسیداتیو و برخی پارامترهای رشدی و فیزیولوژی در گیاه گندم رقم آذر 1 تحت سمیت کادمیوم. مجله زیست شناسی ایران، جلد 21 (شماره 2)، 230-216
  4. دبیری، م. 1375. آلودگی محیط‌زیست، چاپ اول، نشر اتحاد، 401-399.
  5. رسولی صدقیانی، م. ح.، قره­ملکی، ت. بشارتی، ح. و کریمی، ا. 1392. ﺗﺄثیر ریزجانداران مفید خاکزی بر رشد و جذب کادمیوم توسط ذرت. مجله­ی پژوهش­های خاک، جلد 27 (شماره­ی 2)، 215-205.
  6. زارعی، م.، صالح راستین، ن.، و ثواقبی، غ. 1390. کارآیی قارچهای میکوریز آربوسکولار در گیاه پالایی خاکهای آلوده به روی به وسیله گیاه ذرت. مجله علوم و فنون کشاورزی و منابع طبیعی، علوم آب و خاک، سال 15 (شماره­ی 55)، 166-151.
  7. عرفان‌منش، م. و افیونی، م. 1379. آلودگی محیط زیست: آب، خاک، هوا. چاپ چهارم.  نشر ارکان.
  8. وهاب‌زاده، ع. 1372. مبانی محیط‌زیست، چاپ اول، انتشارات جهاد دانشگاهی مشهد.
  9. Abdul-Jaleel, C., Manivannan, P., Sankar, B., Kishorekumar, A., Gopi, R., Somasundaram, R., and Panneerselvam, R. 2007. Pseudomonas florescence enhances biomass yield and ajmalicine production in Catharanthus roseus under water deficit stress. Colloids and Surfaces B: Biointerfaces 60:7-11.
  10. Alexander, D.B. and Zuberer, D.A. 1991. Use of chrome azurol s reagents to evaluate siderophore production by rhizosphere bacteria. Biology and Fertility of Soils 12:39-45.
  11. Amini, M., Afyuni, M., Khademi, H., Abbaspour, K.C. and Schulin, R. 2005. Mapping risk of cadmium and lead contamination to human health in soils of Central Iran. Science of Total Environment 347:64-77.
  12. Arnon, D.I. 1949. copper enzymes in isolated chloroplasts, polyphenoxidase in beta vulgaris. plant Physiology 24:1-15.
  13. Baharlouei, J., khavazi, K., Pazira, E. and Solhi, M. 2011. Evaluation of inoculation of plant growth-promoting rhizobacteria on cadmium and lead uptake by canola and barley. African Journal of Microbiology Research 14:1747-1754.
  14. Belimov, A.A., Hontzeas, N., Safronova, V.I., Demchinskaya, S.V., Piluzza, G., Bullitta, S. and Glick, B.R. 2005. Cadmium-tolerant plant growth promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biology and Biochemistry 37:241–250.
  15. Bent, E., Tuzan, S., Chanway, C.P. and Enebak, S. 2001. Alteration in plant growth and in root hormone levels of lodgepole pines inoculated with rhizobacteria. Canadian Journal of Microbiology 47:793-800.
  16. Bergey, D.H. 1984. Bergeys Manual of Systematic Bacteriology. Williams & Wilkins, U.S.A.
  17. Burd, G.I., Dixon, D.G. and Glick, B.R. 2000. Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Canadian Journal of Microbiology 46:237–245.
  18. Cariny, T. 1995. The re-use of contaminated land: a handbook of risk assessment. John Wiley and Sons, New York. US.
  19. Chen, L., Luo, S., Xiao, X., Guo, H., Chen, J., Wan, Y., Li, B., Xu, T., Xi, Q., Rao, C., Liu, C. and Zeng, G. 2010. Application of plant growth-promoting endophytes (PGPE) isolated from Solanum nigrum L. for phytoextraction of Cd-polluted soils. Applied Soil Ecology 46:383–389.
  20. Cottenie, A. 1980. Methods of plant analysis. In: Soil and plant testing. FAO Soils Bulletin 38:64-100.
  21. Fu, J., Zhou, Q., Liu, J., Liu, W., Wang, T., Zhang, Q. and Jiang, G. 2008. High levels of heavy metals in rice from a typical E-waste recycling area in southeast China and its Potential risk to human health. Chemosphere 71:1269-1275.
  22. Gupta, S.S. and Bhattacharyya, K.G. 2008. Immobilization of Pb(II), Cd(II) and Ni(II) ions on kaolinite and montmorillonite surfaces from aqueous medium. Environmental Management 87:46-58.
  23. Haghiri, F. 1973. Cadmium uptake by plants. Journal of Environmental Quality 2:93-96.
  24. Hernandez, E.L., Lozano - Ridriguez, E., Garate, A. and Carpena- Ruiz, R. 1998. Influence of cadmium on the uptake, tissue accumulation and subcellular distribution of manganese in pea seedlings. Plant Science132:139-151.
  25. Ijagbemi, C.O., Tbeak, M. and Kim, D. 2009. Montmorillonite surface properties and sorption characteristics for heavy metal removal from aqueous solution. Hazardous Materials 166:538-546.
  26. Jeon, J.S., Lee, S.S., Kim, H.K., Ahh, T.S. and Song, H.G. 2003. Plant growth promotion in soil by some inoculated microorganisms. Journal Microbiology 41:271-276.
  27. Jeong, S., Moon, H.S., Nam, K., Kim, J.Y. and Kim, T.S. 2012. Application of phosphate-solubilizing bacteria for enhancing bioavailability and phytoextraction of cadmium (Cd) from polluted soil. Chemosphere 88:204-210.
  28. Jiang, C.Y., Sheng, X.F., Qian, M. and Wang, Q.Y. 2008. Isolation and characterization of a heavy metal resistant Burkholderia sp. from heavy metal contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal polluted soil. Chemosphere 72:157–164.
  29. Kabata-Pendias, A. and. Pendias, H. 2001. Cadmium. p.143-157. In: Kabata-Pendias, A.  and Pendias, H.  (eds.) Trace Elements in Soils and Plants. 3rd ed. CRC Press, Boca Raton, FL.
  30. Kalinowski, B.E., Liermann, L.J., Brantley, S.L., Barnes, A. and Pantano, C.G. 2000. X-ray photoelectron evidence for bacteria-enhanced dissolution of hornblende. Geochimical et Cosmochimica Acta 107:225–231.
  31. Keller, C., Marchettti, M., Rossi, L. and Lugon-Moulin, N. 2005. Reduction of cadmium availability to tobacco (Nicotiana tabacum) plants using soil amendments in low cadmium contaminated agricultural soils: a pot experiment. Plant and soil 276:69-84.
  32. Khan, S., Aijun, L., Zhang, S., Hu, Q. and Zhu, Y.G. 2008. Accumulation of polycyclic aromatic hydrocarbons and heavy metals in lettuce grown in the soils contaminated with long-term waste water irrigation. Hazardous Materials 152:506-515.
  33. Liu, K., Lv, J., He, W.,  Zhang, H.,  Cao, Y. and  Dai, Y. 2015. Major factors influencing cadmium uptake from the soil into wheat plants. Ecotoxicology and Environmental Safety 113:207–213.
  34. Mehrvarz, S., Chaich, M.R. and Alikhani, H.A. 2008. Effects of phosphate solubilizing microorganisms and phosphorus chemical fertilizer on yield and yield components of Barely (Hordeum vulgare L.). American-Eurasian Journal of Agricultural and Environment Sciences 3:822-828.
  35. Nahas, E. 1996. Factors determining rock phosphate solubilization by microorganism isolated from soil. World Journal of Microbiology and Biotechnology 12:567-572.
  36. Piotrowska-Seget, Z., Cycon, M. and Kozdroj, J. 2005. Metal-tolerant bacteria occurring in heavily polluted soil and mine soil. Applied Soil Ecology 28:237-46.
  37. Prasad, M. and Strazalka, K. 1999. Impact of heavy metals on photosynthesis. Journal of Experimental Botany 41:314-320.
  38. Salt, D., Price, R., Pickering, I. and Raskin, I. 1995. Mechanisms of Cadmium mobility and accumulation in Indian mustard. Plant Physiology 109:1427-1433.
  39. Sanita di Toppi, L. and Gabbrielli, R. 1999. Response to cadmium in higher plants- review. Environmental and Experimental Botany 41:105-130.
  40. Saravanan, V.S., Madhaiyan, M. and Thangaraju, M. 2007. Solubilization of zinc compounds by the diazotrophic, plant growth promoting bacterium Gluconacetobacter diazotrophicus. Chemosphere 66:1794-1798.
  41. Sheng, X.F., Xia, J.J., Jiang, C.Y., He, L.Y. and Qian, M. 2008. Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead
  42. accumulation of rape. Environmental Pollution 156:1164-1170.
  43. Sheng, X.F. and Xia, J.J., 2006. Improvement of rape (Brassica napus)plant growth and cadmium uptake by cadmium-resistant bacteria. Chemosphere 64:1036-1042.
  44. Sheoran, I.S., Singal, H.R. and Singh, R. 1990. Effect of cadmium and nickel on photosynthesis and the enzymes of the photosynthetic carbon reduction cycle in pigeon pea (Cajanus cajan). Photosynthetic Research23:345-351.
  45. Sperber, J.I. 1958. The incidence of apatite-solubilizing organisms in the rhizosphere and soil. Australian Journal of Agricultural Research 9:778–781.
  46. Stefan, M., Munteanu, N., Stoleru, V., Mihasan, M. 2013. Effects of inoculation with plant growth promoting rhizobacteria on photosynthesis, antioxidant status and yield of runner bean. Romanian Biotechnological Letters 8:8132-8143. 
  47. Susilowati, L.E. and Syekhfani, S. 2014. Characterization of Phosphate Solubilizing Bacteria Isolated from Pb Contaminated Soils and Their Potential for Dissolving Tricalcium Phosphate. Journal of Degraded and Mining Lands Management 1:57-62.
  48. Vassilev, A. and Yordanov, I. 1997. Reductive analysis of factors limiting growth of cadmium treated plants: A review. Plant Physiology 23:14-133.
  49. Wang, P.C., Mori, T., Komori, K., Sasatsu, M., Toda, K. and Ohtake, H. 1989. Isolation and characterization of an Enterobacter cloacae strain that reduces hexavalent chromium under anaerobic conditions. Applied and Environmental Microbiology 55:1665-1669.
  50. Zafar, M., Rahim, N., Shaheen, A., Khaliq, A., Arjamand, T., Jamil, M., Rehman, Z.U. and Sultan, T. 2011. Effect of combining poultry manure, inorganic phosphorus fertilizers and phosphate solubilizing bacteria on growth, yield, protein content and P uptake in maize. Advances in Agriculture and Botanics 3:46-58.
  51. Zhang, G., Fukami, M. and Sekimoto, H. 2002. Influence of cadmium on mineral concentration and yield components in wheat genotypes differing in Cd tolerance at seedling stage. Field Crops Research77:93-98.