Effect of Different Herbicides on the Activity of Dehydrogenase and Urease Enzymes in Soil

Document Type : Research Paper

Authors

1 Former M.A student Soil Biology and Biotechnology of University Mohaghegh Ardabili

2 Associate professor, Department of Science and Engineering Soil of University Mohaghegh Ardabili

3 Assistant professor, Department Natural Resources of University Mohaghegh Ardabili

Abstract

Background and Objective: This study aimed to investigate the effect of five herbicides (Tribenuron-methyl, Metribuzin, Trifluoralin, Haloxyfop-methyl, and 2, 4-D (on the soil dehydrogenase and urease activities. Method: The experiment was conducted as a completely randomized design with five herbicides and a control with three replicates for six months and the enzyme activities were measured at beginning of the experiment, and after three and six months. The concentration of herbicides was 0.27, 0.67, 0.67, 0.67, and 0.1 mg/kg soil for Haloxyfop-methyl, Metribuzin, Trifluoralin, 2, 4-D, and Tribenuron-methyl, respectively. Findings: The results showed that the effect of herbicides on the enzyme activities was significantly different (p0.01). After 3 months, the herbicides decreased the urease activity in comparison to the control (34.9 µgN.g-1). The most reduction was related to Trifluoralin (24.8 µgN.g-1) which was 28.9% lower than the control. Urease activity increased after six months compared to three months, and this increase was 41.5% for Trifluoralin herbicides (35.1 µgN.g-1). Urease activity in control treatment in six months was not significant compared to the three months. All of the herbicides significantly reduced the dehydrogenase activity after three months compared to the control (0.6 µgTPF.g-1), so that the dehydrogenase activity was observed in Haloxyfop treatment with 0.01 µgTPF.g-1, which was 98% lower than the control. In all treatments, dehydrogenase activity after six months was significantly higher than that in the three months, so that the highest dehydrogenase activity was observed in 2,4-D treatment (1.44 µgTPF.g-1), which was significantly higher than the control. Conclusion: The results show that the herbicides significantly decreased the activity of the enzymes compared to the control during the three months. After six months the enzyme activities recovered to the level before herbicides application. Probably this was due to a short lifetime of herbicide in the soil which was less than six months. 

Keywords


  1. اسکندر، ز. موسوی، ک. حیدری، ا. 1387. علف‌کش‌ها و روش‌های کاربرد آنها (با رویکرد بهینه سازی و کاهش مصرف)، مشهد: جهاد دانشگاهی مشهد، 572 ص.
  2. زارعی، ط. کاظمینی، ع.ر. غدیری، ح. 1393. اثر کاربرد علف‌کش هالوکسی فوپ آر متیل استر و مویان بر کنترل علف‌های هرز باریک برگ و عملکرد و اجزای عملکرد دانۀ گلرنگ، دوره 16، شماره 4، سال 1393، صفحه‌های 956-945.
  3. عرفان منش، م. افیونی، م. ١٣٨١. آلودگی محیط زیست، آب، خاک و هوا (چاپ دوم) انتشارات ارکان، اصفهان.
  4. موسوی، م. ر. رستگار، م. ع. 1376. آفت‌کش‌ها در کشاورزی، انتشارات برهمند دانشگاه آزاد اسلامی واحد ورامین.
  5. منصور زاده، م. رئیسی، ف.1391 .اثر علف‌کش ارادیکان بر کربن و نیتروژن توده زنده میکروبی و فعالیت اوره‌آز و آریل سولفاتاز در یک خاک آهکی تحت شرایط مزرع‌های، دانشگاه شهرکرد، سال شانزدهم ، شماره پنجاه و نهم، صفحه‌های 167- 153 .
  6. Ashton, F. and Monaco, T. J. 1991. Weed knowledge: basics and methods. Translation of Ghadiri, H. 1386. Third print, Shiraz: Shiraz University publication.
  7. Baxter, J. and Cummings, S. 2006.The application of the herbicide bromoxynil to a model soil‐derived bacterial community: impact on degradation and community structure. Letters in Applied Microbiology 43)6(: 659-665.‏
  8. Bera,S. and Ghosh,R. 2013. Soil microflora and weed management as influenced by atrazine 50 % WP in sugarcane. Universal Journal of Agricultural Research. 1)2(: 41-4‏
  9. Baćmaga, M. Borowik, A. Kucharski, J. Tomkiel, M. and Wyszkowska, J. 2015. Microbial and enzymatic activity of soil contaminated with a mixture of diflufenican+ mesosulfuron-methyl+ iodosulfuron-methyl-sodium. Environmental Science and Pollution Research, 22(1):643-656.
  10. Bello, D. Trasar-Cepeda, C. Leirós, M. C. and Gil-Sotres, F.  2013. Modification of enzymatic activity in soils of contrasting pH contaminated with 2, 4-dichlorophenol and 2,4,5-trichlorophenol. Soil Biology Biochemistry, 56: 80–86.‏
  11. Briceno, G. Palma, G. and Durán, N. 2007. Influence of organic amendment of the biodegradation and movement of pesticides. Critical Reviews in Environmental Science and Technology, 37(3): 233-271.
  12. Cycon, M. Wojcik, M. and Piotrowska-Seget, Z. P. 2009. Biodegradation of the organophosphorus insecticide d
  13. منصور زاده، م. رئیسی، ف.1391 .اثر علف‌کش ارادیکان بر کربن و نیتروژن توده زنده میکروبی و فعالیت اوره‌آز و آریل سولفاتاز در یک خاک آهکی تحت شرایط مزرع‌های، دانشگاه شهرکرد، سال شانزدهم ، شماره پنجاه و نهم، صفحه‌های 167- 153 .
  14. iazinon by serratia sp. and psedomonas sp. and their use in bioremediation of contaminated soil. Chemosphere, 76(4): 494-501.
  15. Gupta, P. K. 2004. Soil, plant, water and fertilizer analysis. Agrobios. India.
  16. Goswami, M. R. Pati, U. K. Chowdhury. A. and Mukhopadhyay, A. 2013. Studies on the effect of cypermethrin on soil microbial biomass and its activity in an alluvial soil. International Journal of Agricultural and Food Science, 3(1): 1-9.‏
  17. Jones Jr, J. B. 2001. Laboratory guide for conducting soil tests plant and plant analysis. CRC Press.
  18. Muñoz -Leoz, B. Ruiz-Romera, E. Antigüedad, I. and Garbisu, C. 2011. Tebuconazole application   decreases soil microbial biomass and activity.Soil Biology and Biochemistry, 43(10): 2176-2183.‏
  19. Kujur, M. Gartia, S.K. and Patel, A. K. 2012. Quantifying the contribution of different soil properties on enzyme activities in dry tropical ecosystems. Journal of Agricultural and Biological Science, 7(9): 763-773.
  20. Kandeler, E. and Gerber, H. 1988. Short-term assay of soil urease activity using colorimetric determination of ammonium. Biology and Fertility of Soils, 6(1): 68-72.‏
  21. Nannipieri, P. Kandeler, E. and Ruggiero, P. 2002. Enzyme activities and microbiological and biochemical processes in soil.p. Enzymes in the Environment. Marcel Dekker, New York, 1-33.‏
  22. Nelson, D. W. and Sommers, L. 1982. Total carbon, organic carbon, and organic matter 1. Methods of soil analysis. Part 2. Chemical and Microbiological Properties, (methodsofsoilan2), 539-579.
  23. Quilchano, C. and Maranon, T.  2002. Dehydrogenase activity in mediterranean forest soils. Biology and    Fertility of Soils, 35(2): 102-107.‏
  24. Rahmansyah, M. Antonius, S. and Sulistinah, N. 2009. Phosphatase and urease instability caused by pesticides present in soil improved by grounded rice straw. Journal of Agricultural and Biological Science, 4(2): 56-62.
  25. Renella, G. Mench, M. Landi, L. and Nannipieri, P. 2005. Microbial activity and hydrolase synthesis in long-term Cd-contaminated soils. Soil Biology and Biochemistry, 37(1):133-139.
  26. Thalmann, A. 1968. Zur Methodik der bestimmung der dehydrogenaseaktivitat im boden mittels triphenyltetrazoliumchlorid (TTC). Landwirtsch Forsch, 21: 249-258.
  27. Wu, X. M. Long, Y.  H. Li, Y. R. Liu, R. X. and Liu, M. 2014. Effects of napropamide on microbiological characteristics of tobacco rhizosphere soil and its dissipation. Journal of Soil Science and Plant Nutrition, 14(1):151-159.‏
  28. Waldrop, M. P. and Firestone, M. K. 2004. Microbial community utilization of recalcitrant and simple carbon compounds: impact of oak-woodland plant communities. Oecologia, 138(2): 275-284.‏
  29. Xiong, D. Gao, Z. Fu, B. Sun, H. Tian, S. Xiao, Y. and Qin , Z. 2013. Effect of pyrimorph on soil enzymatic activities and respiration. European Journal of Soil Biology, 56:44–48.