Evaluation of plant-growth promotion and biocontrol characteristics in fluorescent pseudomonads isolated from vermicompost

Document Type : Research Paper

Authors

1 Former M. Sc Student, Department of Soil Science and Engineering, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili

2 Associate Professor, Department of Soil Science and Engineering, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili

3 Assistant Professor, Department of Soil Science and Engineering, Faculty of Agriculture, Vali-E-Asr University of Rafsanjan

Abstract

Fluorescent pseudomonads are one of the most effective microorganisms among the plant growth-promoting bacteria. They have attracted many researchers attention due to their unique properties such as motility in the rhizosphere, high growth rate, and potential for the root colonization of various plants. In most studies, rhizospheric soils were used for isolation but Pseudomonas bacteria also have been isolated from various organic fertilizers. Therefore, the present study was conducted to evaluate plant-growth promotion and biocontrol characteristics of fluorescent pseudomonads isolated from vermicompost. Then, the ability of isolates was evaluated for auxin and siderophore production, tricalcium phosphate dissolution, and secretion of growth inhibitor metabolites. Total of 43 fluorescent pseudomonads isolates were isolated and purified based on irradiation under a UV lamp and fluorescence properties. Results of the PGP characteristics revealed that all the isolates were able to produce auxin and solubilize inorganic phosphorous. The average of auxin production was 2.51 mg/l. The highest (708 mg/l) and lowest (203 mg/l) amount of soluble phosphate belonged to P15 and P43 isolates, respectively. P35 isolate showed the most efficient in terms of siderophore production in which the ratio of halo zone diameter: colony diameter was 2.04 mm (after 48 hours) and 2.12 mm (after 72 hours). The results of the hydrogen cyanide production test showed that 88.35% of isolates could secrete this metabolite. In this research, all isolates were not able to produce protease enzymes. In terms of production of this enzyme, the P17 isolate showed the highest ratio of halo zone diameter: colony diameter (2.7 mm), was the most efficient one. None of the isolates were able to produce cellulase enzymes.

Keywords


  1. آذرمی، ف.، مظفری، و.، عباسزاده دهجی، پ.، حمیدپور، م. 1393. جداسازی باکتری­های سودوموناس فلورسنس از ریزوسفر درختان پسته و تعیین برخی خصوصیات محرک رشدی آنها. نشریه زیست شناسی خاک، جلد 2: 173-186.
  2. رسولی صدقیانی، م.ح.، ملکوتی، م.ج.، خاوازی، ک.، قنادی مراغه، م. 1387 . نقش سیدروفور سودوموناس­های فلورسنت  در جذب روی توسط گندم با استفاده از ایزوتوپ .Zn65 مجله علوم و فنون هسته­ای، جلد 43 :20-30.
  3. سلطانی طولارود، ع. ا.،  صالح راستین، ن.،  خاوازی، ک.، اسدی رحمانی، ه.، عباسزاده دهجی، پ. 1386. جداسازی و بررسی صفات محرک رشد گیاهی برخی از سودوموناس­های فلورسنت بومی خاکهای ایران. مجله علوم خاک و آب، جلد 21: 277-289.
  4. سلطانی طولارود، ع. ا.، عیوضی نی، م.، قویدل، ا.، عباس زاده دهجی، پ.، گلی کلانپا، ا. 1398. جداسازی، غربالگری و بررسی صفات محرک رشد گیاهی ریزجاندارن مقاوم به کادمیوم و سرب. تحقیقات کاربردی خاک، در حال انتشار.
  5. علی اصغرزاده، ن. 1385. روش­های آزمایشگاهی در بیولوژی خاک. انتشارات دانشگاه تبریز.
  6. گلزاری، ه.، پنجه­که، ن.، احمدزاده، م.، سالاری، م.، صداقتی خروی، ا. 1390. مطالعه نقش موثر برخی متابولیت­های باکتری سودوموناس فلورسنت در کنترل نماتد ریشه گرهی Meloidogyne javanica روی گوجه­فرنگی. مجله دانش گیاه­پزشکی ایران، 42 (1): 113-124.
  7. نورزاده­روشن، ا.، قربانی نصرآبادی، ر.، بارانی مطلق، م.، یامچی، ا. 1394. بررسی برخی ویژگی­های افزاینده رشدی جدایه­های باکتریایی به­دست آمده از کودهای جانوری و شناسایی جدایه­های برگزیده. نشریه مدیریت خاک و تولید پایدار، جلد 5 (3): 129-144.
  8. Abbas-Zadeh, P., Saleh-Rastin, N., Asadi-Rahmani, H., Khavazi, K., Soltani, A., Shoary-Nejati, R. and Miransari. M. 2010. Plant growth-promoting activities of fluorescent pseudomonads, isolated from the Iranian soils. Acta Physiologiae Plantrum 32: 281 -288.
  9. Ahemad, M., and Khan, M.S. 2012. Effect of fungicides on plant growth promoting activities of phosphate solubilizing Pseudomonas putida isolated from mustard (Brassica campestris) rhizosphere. Chemosphere. 86: 945-950.
  10. Ahmad, F., Ahmad, L. and Saghir, M. 2005. Indol acetic acid production by the indogenous isolates of Azotobacter and Pseudomonas fluorescens in the presence and absence of Tryptophan. Turkish Journal of Biology 29: 29-34.
  11. Alef, K. and Nannipieri, P. 1995. Methods in Applied Soil Microbiology and Biochemistry. Academic Press, London, 453p.
  12. Alexander, D.B. and Zuberer, D. A. 1991. Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biology and Fertility of Soils 12: 39-45.
  13. Ananthakrishnasamy, S. and Gunasekaran, G. 2015. Growth Assessment of Microorganisms in Vermicomposting of Municipal Wastes Materials in Different Days. International Journal of Environmental & Agriculture Research (IJOEAR) 1: 1-9.
  14. Anderson, J.P.E. 1982. Soil respiration. In: Page A.L. and Mille R.H. (Ed.), Methods of  Soil Analysis, Part 2, Chemical and Micro Biological Properties, American Society of Agronomy, Madison, WI, pp. 831-871.
  15. Arraktham, S., Tancho, A., Niamsup, P. and Rattanawaree, P. 2016. The potential of bacteria isolated from earthworm intestines, vermicompost and liquid vermicompost to produce indole-3-acetic acid (IAA). Journal of Agricultural Technology 12: 229-239.
  16. Bansal, S. and Kapoor, K.K. 2000. Vermicomposting of crop residues and cattle dung with Eisenia foetida. Biores. Technology 73: 95-98.
  17. Bremner, J.M. and Mulvaney, C.S. 1982. Nitrogen—total. methods of soil analysis. Part 2. chemical and microbiological properties, (methodsofsoilan2), 595-624.
  18. Djuric, S., Pavic, A., Jarak, M., Pavlovic, S., Starovic, M., Pivic, R. and Josic, D. 2011. Selection of indigenous fluorescent pseudomonad isolates from maize rhizospheric soil in vojvodina as possible PGPR. Romanian Biotechnological Letters 16: 6580-6590.
  19. Domínguez, J., Aira, M. and Gómez Wastes to Resources (pp. 93-114). Springer, Berlin Heidelberg.Brandón, M. 2010. Vermicomposting earthworms enhance the work of microbes. In: H. Insam, I. Franke-Whittle and M. Goberna, (Eds.), Microbes at Work: From
  20. Donate-Correa, J., Leon-Barrios, M. and Perez-Galdona, R. 2004. Screening for plant growth-promoting rhizobacteria in Chamaecytisus proliferus (tagasaste), a forage treeshrub legume endemic to the Canary Island. Plant Soil 266: 261-272.
  21. Elmer, W.H. 2009. Influence of earthworm activity on soil microbes and soilborne diseases of vegetables. Plant Disease 93: 175–179.
  22. Esakkiammal, B., Esaivani, C., Vasanthi, K., LakshmiBai, L. and Shanthi Preya, N. 2015. Microbial diversity of Vermicompost and Veriwash prepared from Eudrilus euginae International Journal of Current Microbiology and Applied Sciences 4(9): 873-883.
  23. Garg, V.K., Yadav, Y.K., Sheoran, A., Chand, S. and Kaushik, P. 2006. Live stocks excreta management through vermicomposting using an epigeic earthworm Eisenia foetida. Environmentalist 26: 269-276.
  24. Glick, B.R. 1995. The enhancement of plant growth by free-living bacteria. Canadian Journal of Microbiology 41: 109–117.
  25. Glick, B.R. 2005. Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiology Letters 251: 1-7.
  26. Gopal, M., Gupta, A., Sunil, E. and Thomas, V.G. 2009. Amplification of plant beneficial microbial communities during conversion of coconut leaf substrate to vermicompost by Eudrilus spp. Current Microbiology 59: 15–20.
  27. Gopinathan, R. and Prakash, M.  2014. Isolation of Plant Growth Promoting Rhizobacteria (PGPR) from Vermicompost and effect on growth of Green Gram (Vigna radiata L.). International Journal of Current Microbiology and Applied Sciences 3(7): 1072-1081.
  28. Gouda, S., Kerry, R.G., Das, G., Paramithiotis, S., Shin, H.S. and Patra, P.J., 2018. Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiological Research 206: 131–140.
  29. Kalitkiewicz, A. and Kepczynska, E. 2008. The use of rhizobacteria to stimulate plants growth. Biotechnology 81: 102–114.
  30. Katiyar, D.; Hemantaranjan, A. and Dwivedi, P. 2018. Plant growth promoting rhizobacteria and their roles as fungal biocontrol agents: An overview. Journal of Plant Science and Research 34: 127–136.
  31. Khakipour, N., Khavazi, K., Mojallali, H., Pazira, E. and Asadirahmani, H. 2008. Production of auxin hormone by fluorescent pseudomonads. American-Eurasian Journal of Agricultural and Environmental Science 4: 687-692.
  32. Klama, J., Wolna-Maruwka, A. and Niewiadomska, A. 2010. Influence of endophytic bacteria coinoculation on seedlings of common wheat development. NaukaPrzyr Technology 6: 1–7.
  33. Kremer, R., and Souissi, T. 2001. Cyanide production by rhizobacteria and potential for suppression of weed seedling growth. Microbiol. 43: 182-186.
  34. Kucey, R.M.N. 1983. Phosphate solubilizing bacteria and fungi in various cultivated and virgin Alberta soils. Canadian Journal of Soil Science 63: 671-678.
  35. Kumara, P., Thakura, S., Dhingrac, G.K., Singhd, A., Kumar Pale, M., Harshvardhanf, K., Dubeyg, R.C. and Maheshwarig, D.K. 2018. Inoculation of siderophore producing rhizobacteria and their consortium for growth enhancement of wheat plant. Biocatalysis and Agricultural Biotechnology 15: 264-269.
  36. Majidi, S., Roayaei, M., and Ghezelbash, G. 2011. Carboxymethyl cellulase and filter paperase activity of new strains isolated from Persian Gulf. Microbiol. J. 1: 8-16.
  37. Maurhofer, M., Keel, C., Haas, D., and Defago, G. 1995. Influence of plant species on disease suppression by Pseudomonas fluorescens Strain CHA0 with enhanced antibiotic production. Plant Pathol. 44: 40-50.
  38. Nabti, E.A., Bensidhoum, L.A., Tabli, N.A., Dahel, D.A., Weiss, B., Rothballer, M.R., Schmid, M.B. and Hartmann, A. 2014. Growth stimulation of barley and biocontrol effecton plant pathogenic fungi by a Cellulosimicrobium sp. strain isolated from salt-affected rhizosphere soil in northwestern algeria. European Journal of Soil Biology 61: 20-26.
  39. Nagarajkumar, M., Bhaskaran, R. and Velazhahan, R. 2004. Involvement of secondary metaboloties and extracellular lytic enzymes produced by Pseudomonas fluorescens in inhibition of Rhizoctonia solani, the rice, sheath blight pathogen. Microbiology Research 159: 73-81.
  40. Noori, M. S. Sh. and Saud, H. M. 2012. Potential Plant Growth-Promoting Activity of Pseudomonas sp Isolated from Paddy Soil in Malaysia as Biocontrol Agent. Plant Pathology and Microbiology 3:1-4.
  41. Patten, C.L. and Glick, B.R. 2002. Role of Pseudomonas putida indole acetic acid in development of the host plant root system. Applied and Environmental Microbiology 68: 3795–3801.
  42. Raja, D., Sivasankari, B. and Daniel, T. 2008. Bioefficacy of Methylobacterium spp. Isolated from various leaf samples on the growth performance of black gram, (L.)  Walp. Journal of Current Sciences, 12: 735-740.
  43. Saharan, B.S. 2011. plant growth promoting rhizobacteria: a critical review. Life Sciences and Medicine Research.
  44. Schaad, N.W., Jones, J.B. and Chun, W. 2001. Laboratory guide for the identification of plant pathogenic bacteria (No. Ed. 3). American Phytopathological Society (APS Press).
  45. Schippers, B., Bakker, A.W. and Bakker, A. H. M. 1987. Interactions of deleterious and and beneficial rhizosphere microorganisms and the effect of cropping practices. Annual Review of Phytopathology 25: 339-59.
  46. Sharma, S., Kumar, V. and Tripathi, R. B. 2017. Isolation of phosphate solubilizing microorganism (PSMs) from soil. Journal of Microbiology and Biotechnology Research 1(2): 90-95.
  47. Sivasankari, B. Anandharaj, M. and Daniel, T. 2014. Effect of PGR producing bacterial strains isolated from vermisources on germination and growth of Vigna unguiculata (L.) Walp. Journal of Biochemical Technology 5(4): 808-813.
  48. Sivasankari, B. and Anandharaj, M. 2014. Isolation and Molecular Characterization of Potential Plant Growth Promoting Bacillus cereus GGBSTD1 and Pseudomonas spp. GGBSTD3 from Vermisources. Advances in Agriculture 1-13.
  49. Sivasankari, B. and Daniel, T. 2010. A study on isolation and characterization of PGR producing microorganisms from vermicompost. Journal of Environmental Ecology 28(44): 2509-2510.
  50. Spaepen, S., Vanderleyden, J. and Remans, R. 2007. Indole-3-acetic acid in microbial and microorganism plant signaling. FEMS Microbiology Reviews 31: 425–448.
  51. Sperber, J. I. 1958. the incidence of apatite soulbilizing organisms in the rhizospher. Aust. J. Agr. Res. 9: 778-781.
  52. Vyas, P. and Gulati, A. 2009. Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent pseudomonas. BMC microbiology 9: 1-8.
  53. Walkly, A.J., and Black, H.A. 1934. An examination of degtijaref method for determining soil organic matter and a proposed modification of the chromic acid in soil analysis. I. experimental. Soil Science Society of America Journal, 79: 459- 465.
  54. Whitelaw, M.A. 2000. Growth promotion of plants inoculated with phosphate solubilizing fungi. Advances in Agronomy 69: 99-151.
  55. Wollum, A.G. 1982. Cultural methods for soil microorganisms, P 781-801. In: A.L. Page (ed.), Methods of soil Analysis, Part 2. Am. Soc. Agron. and Soil Sci. Soc. Am. Madison, WI.
  56. Yasir, M., Aslam, Z., Kim, S.W., Lee, S.W., Jeon, C.O. and Chung, Y.R. 2009a. Bacterial community composition and chitinase gene diversity of vermicompost with antifungal activity. bioresource Technology 100: 4396–4403.
  57. Yu, X., Ai, C., Xin, L. and Zhou, G. 2011. The siderophore-producing bacterium, Bacillus subtilis CAS15, has a biocontrol effect on Fusarium wilt and promotes the growth of pepper. European Journal of Soil Biology 47: 138–145.