Application of bioactivator to accelerate the production of compost from sugercane bagasse

Document Type : Research Paper

Authors

1 Assistant Professor of Soil and Water Research Department, Safiabad Agricultural Research and Education and Natural Resources Center, Agricultural Research, Education and Extension Organization (AREEO), Dezful, Iran

2 scientific staff

Abstract

In order to study the effect of bioactivator application to accelerate the production of compost from sugarcane wastes, an experiment was conducted as a complete randomized design with four replications in Safiabad Agricultural Research and Education and Natural Resources Center in 2020 (for one year). The treatments included: control (bagasse without the use of bioactivator) and the second to fourth treatment were the application of 0.5, 1 and 1.5% by weight of bioactivators in 100 kg bagasse, respectively. The results showed that, there was a significant difference between treatments at significance level of 5% in the terms of electrical conductivity (EC), organic carbon (OC), C/N (in sampling after 45 days) and Fe and Mn concentrations (in sampling after 60 days). Furthermore there was a significant difference between treatments at the level of 1% in terms of OC, C/N and Cu concentration (in sampling after 60 days). Studies also showed that the highest temperature (52 °C) was measured in 1.5 % treatment and the highest EC was measured in sampling after 45 days in 1% treatment (3.02 dS/m). The highest OC and C/N, were measured in sampling after 60 days (43.9% and 34.4) in 1.5 % treatment, respectively. Regarding the amount of elements in the final compost (in sampling after 60 days), the highest amount of Fe concentration (4581.5 mg. kg-1) was measured in 1 % treatment, Cu (15.25 mg. kg-1) and Mn (72.25 mg. kg-1) were measured in 1.5 % treatment and no significant difference was observed among the treatments in terms of nitrogen, phosphorus, potassium and zinc (Zn) concentrations at significance level of 5%. According to results of this study, the 1.5% treatment increase the speed and quality of compost produced from sugarcane waste (bagasse).

Keywords

Main Subjects


  1. احمدی، ک.، عبادزاده، ح.، حاتمی، ح.، محمدنیا افروزی، ش.، اسفندیاری پور، ا. و عباس طاقانی، ر. 1400. آمارنامه کشاورزی. جلد اول (محصولات زراعی)، وزارت جهاد کشاورزی، تهران، ایران، صفحه 70.
  2. احیایی، م. 1376. شرح روشهای تجزیه شیمیایی خاک. نشریه فنی. موسسه تحقیقات خاک و آب، شماره 1024، 112 صفحه.
  3. محمدیان‌فرد، ز. و عسکری بزایه، ح. 1392. تولید کمپوست و ورمی کمپوست از ضایعات نیشکر. دومین همایش ملی علوم و فنون غذایی.
  4. یوسفی‌روستایی، م.، جعفرملکوتی، م. و خاوازی، ک. 1394. اثر افزودنی‌های ملاس و خاک فسفات توام با فعال‌کننده زیستی بر فرایند کمپوست باگاس نیشکر. اولین همایش بین المللی و چهارمین همایش ملی گیاهان دارویی و کشاورزی پایدار.
  5. Abbasi, M.K., Musa, N. and Manzoor, M. 2015. Mineralization of soluble P fertilizers and insoluble rock phosphate in response to phosphate-solubilizing bacteria and poultry manure and their effect on the growth and P utilization efficiency of chilli (Capsicum annuum L.). Biogeosciences 12: 4607-4619.
  6. BioAbfV, L., 1998. Verordnung über die Verwertung von Bioabfällen auf landwirtschaftlich, forstwirtschaftlich und gärtnerischgenutztenBöden (Bioabfallverordnung-BioAbfV).
  7. Bushnell, D.L. and Haas, H.F. 1941. The utilization of certain hydrocarbons by microorganisms. Kansas Agricultural Experiment Station 199: 653–673.
  8. Chang, J.I. and Hsu, T.E. 2008. Effects of compositions on food waste composting. Bioresource Technology Journal 99: 8068– 8074.
  9. De Figueirêdo, V.R., Martos, E.T., De Siqueira, F.G., Maciel, W.P., Silva, R.D., Rinker, D.L. and Souza Dias, E. 2013. Microbial inoculation during composting improves productivity of sun mushroom (Agaricussubrufescens Peck). African Journal of Microbiology Research 7(35):4430-4434.
  10. Diallo, N.D., Bengue, M., Guer, M., Kâ, M., Tine, E. and Baye, C.T. 2017. Composting of sugar cane bagasse by Bacillus strains. African Journal of  Biotechnology 16(3): 113-123.
  11. Finstein, M.S. and Morris M.L. 1975. Microbiology of municipal solid waste composting. Advances in Applied Microbiology  19: 113-151.
  12. Fauci, M.F., David, F., Bezdicek, D.C. and Finch, R. 2013. End Product Quality and Agronomic Performance of Compost. Compost Science and Utilization 7:17-29.
  13. Franke-Whittle, I.H., Confalonieri, A., Insam, H., Schlegelmilch, M. and Korner, I. 2014. Changes in microbial communities during cocomposting of digestates. Waste Management 34:632-641.
  14. Ghaffari, S., Akhavan, A.S., Razavi, M.R., Malekzadeh, F. and Haydarian, H. 2011. Effectiveness of inoculation with isolated Anoxybacillus sp. MGA110 on municipal solid waste composting process. African Journal of Microbiology Research 5: 5373-5378.
  15. Hemayati, S., Hamdi, H., Taleghani, D. and Amili, H. 2011. National strategic plan of sugarcane research. Sugar beet Seed Institute (SBSI) and Sugarcane and byproducts Research, Education and Development Institute (Persian).
  16. Ismayana, A., Indrasti, A.S. and Sane, T. 2012. Co-Composting process of bagasse and sludge from sugarcane industry with influence of difference initial C/N value and aeration. 2nd International Conference on Adaptive and Intelligent Agroindustry 54-62.
  17. Ihnat, M. and Fernandes, L. 1996. Trace element characterization of composted poultry manure. Bioresource Technology Journal 57:143–156.
  18. Inbar, Y., Hadar, Y. and Chen, Y. 1993. Recycling of cattle manure: The composting process and characterization of maturity. Journal of Environmental Quality 96: 214-223.
  19. Larney, F.J., Olson, A.F., DeMaere, P.R., Handerek, B.P. and Tovell, B.C. 2008. Nutrient and trace element changes during manure composting at four southern Alberta feedlots. Canadian Journal of Soil Science 88: 45-59.
  20. Leita, L., Enne, G., Nobili, D.M., Baldini, M. and Sequi, P. 1991. Heavy metal bioaccumulation in lamb and sheep bred in smelting and mining areas of S.W. Sardinia (Italy). Bulletin of Environmental Contamination and Toxicology. Lewis Publishers, Boca Raton 46: 887– 893.
  21. Lo, Y.C., Saratale, G.D., Chen, W.M., Bai, M.D. and Chang, J.S. 2009. Isolation of cellulose-hydrolytic bacteria and applications of the cellulolytic enzymes for cellulosic biohydrogen production, Enzyme. Enzyme and Microbial Technology 44: 417–425.
  22. Mehta, C., Palni, U., Franke-Whittle, I. and Sharma, A. 2014. Compost: Its role, mechanism and impact on reducing soil-borne plant diseases. Waste Management 34:607-622.
  23. Moore, J.E., Watabe, M., Stewart, A., Cherie Millar, B. and Rao, J.R. 2009. A novel challenge test incorporating irradiation ((60)co) of compost subsamples to validate thermal lethality towards pathogenic bacteria. Ecotoxicologyand Environmental Safety 72: 144-153.
  24. Rezende, C.A., de Lima, M.A., Maziero, P., deAzevedo, E.R., Garcia, W. and Polikarpov, I. 2011. Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility. Biotechnology for Biofuels and Bioproducts 4: 54.
  25. Sompong, M., Supamard, P. and Richard, W.W. 2004. Co-composting of filter cake and bagasse :by-products from a sugar mill. Department of soil science.
  26. Sarkamarian, F., Salehi Jouzani, G. and Moradi, F. 2015. Fast production of enriched biocompost from sugarcane baggase using biotechnological process. Journal of Crop Biotechnology 5 (9): 49-64.
  27. Singh, S. and Saxena, R. 2011. Translocation of metals and its effects in the tomato plants grown on various amendments of tannery waste: evidence for involvement of antioxidants. Chemosphere 57:91–99.
  28. Stenbro-Olsen, P.W. 1998. Studies on the microbial ecology of open windrow composting. Ph.D. Dissertation. 212 pp. Dundee: University of Abertay.
  29. Wadkar, D.V., Modak, P.R. and Chavan, V.S. 2013. Aerobic thermophilic composting of municipal solid waste. International Journalof Engineering, Science and Technology 5:716-718.
  30. Wang, J.Y., Stabnikova, D., Tay, S.T.L., Ivanov, V. and Tay, J.H. 2003. Intensive composting of sewage sludge and food waste by Bacillus thermoamylovorans. World Journal of Microbiology and Biotechnology 19:427-432.
  31. Watanabe, T., Terranishi, H., Honda, Y. and Kuwahara, M. 2000. A selective lignin – degrading fungus, Cerporiopsis subvermispora, produces alkalitaconates that inhibit the production of a cellulolytic active oxygen species, hydroxyl radical in the presence of iron and H2O2. European Journal of Biochemistry 13: 4222- 4231.
  32. Zaved, H.K. 2008. Isolation and characterization of effective bacteria for solid waste degradation for organic matter. KMITL Science and Technology Journal 8, No. 2, jul- Dec.