Changes of Expression Pattern of Proteins and Superoxide Dismutase Isozymes of Nodules to Drought Stress in Symbiosis of Chickpea with Three Strains of Mesorhizobium ciceri

Document Type : Research Paper

Author

Assistant Professor, Biology Department, Lorestan University

10.22092/sbj.2014.128408

Abstract

In this study, the role of rhizobium strains on symbiotic effectiveness of chickpea plants under drought stress was evaluated. Chickpea (Cicer arietinum L.) plants were inoculated with three strains of Mesorhizobium ciceri (C-15, CP-31 and CP-36) and subsequently were exposed to drought stress by withholding irrigation for two and three days. Nitrogen fixation decreased in three symbiotic associations, but decline level was higher in the plants inoculated with CP-31 and CP-36 strains. Re-watering of plants under drought stress for three days led to a partial recovery of nitrogen fixation rate in C-15 strain, but there was no recovery in CP-31 and CP-36 strains. Changes of protein profiles of the nodules inoculated with the three studied strains were analyzed by using SDS-PAGE under normally irrigated condition, no irrigation for 2 and 3 days, and no irrigation for three days followed by a watering period of three days. Protein pattern in nodules infected with C-15 strain did not change in response to drought stress, but in nodules infected with CP-31and CP-36 strains, some protein bands were identified whose expression specifically decreased under drought and, did not recover after re-watering,. Electrophoresis analysis of superoxide dismutase isoenzymes from nodules infected with the studied three strains did not show significant difference under drought compared with the control. However, after application of drought stress, superoxide dismutase activity of nodules increased in symbiosis with C-15, whereas it decreased in symbiosis with CP-31 and CP-36. In conclusion, tolerance level of symbioses to drought stress could be enhanced by selection of effective rhizobium strains.

Keywords


  1. صباغ­پور، س. ح. صفی­خانی، م. پزشکپور پ. جهانگیری، ع. سرپرست ر. کرمی، ا. پورسیاه بیدی، م. شهریاری د. محمودی، ف. کشاورز، ک. 1389. آزاد، رقم جدید نخود زراعی برای مناطق معتدل و نیمه گرمسیری در شرایط دیم. به­نژادی نهال و بذر. شماره 2، جلد 1-26، 395-393.
  2. صباغ­پور، س. ح.، پزشکپور، پ.، سرپرست، ر.، سعید، آ.، صفی­خانی، م.، جهانگیری، ع.، کرمی، آ.، پورسیاه بیدی، م.، شهریاری، د.، محمودی، ف.، کشاورز، ک. (1389) مطالعه پایداری عملکرد دانه در ژنوتیپ­های نخود (Cicer arietinum) در کشت پاییزه در شرایط دیم. مجله به­نژادی نهال و بذر. شماره 2، جلد 1-26، 191-173
  3. عابدینی، ر.، شهبازی، م.، پیشکام­راد، ر.، ابراهیمی، آ، 1391. بررسی بیان خانواده ژنی دهیدرین­ها در ژنوتیپ­های حساس و متحمل جو وحشی و زراعی در شرایط تنش خشکی. زیست گیاهی. 11: 46-39
  4. Ahmed, M.M. 2007. Nitrogen fixation of pea (Pisum sativum L.) and common bean (Phaseolus vulgaris ) at various phosphorus supply levels. Goettingen, Georg-August-University Goettingen, PhD thesis
  5. Apel, K. and H. Hirt. 2004. Reactive oxygen species: metabolism, oxidative stress and signal transduction. Annu. Rev. Plant Biol. 55: 373-399.
  6. Arrese-Igor C., E.M. Gonzalez, A.J. Gordon, F.R. Minchin, L. Galvez, M. Royuela, P.M. Cabrerizo, and P.M. Aparicio-Tejo. 1999. Sucrose synthase and nodule nitrogen fixation under drought and other environmental stresses. Symbiosis. 27: 189–212
  7. Arrese-Igor, C., E.M. Gonzalez, D. Marino, R. Ladrera, E. Larrainzar, and E. Gil-Quintana. 2011. Physiological Responses of legume nodules to drought. Plant Stress. 5(1): 24-31
  8. Becana, M., Dalton, D. A., Moran, J. F., Iturbe-Ormaetxe, I., Matamoros, M. A. and Rubio, M. C. 2000. Reactive oxygen species and antioxidants in legume nodules. Physiol. Plant. 109: 372–381
  9. Bradford, M. 1976. A rapid and sensitive method for the quantification of microgram quantities of proteins utilising the principal of protein-dye binding. Anal. Biochem. 72:248–254
  10. Chaves, M.M. and Oliveira, M.M. 2004, Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. J. Exp. Bot. 55: 2365-2384
  11. Djekoun, A., and C. Planchon. Water status effect on dinitrogen fixation and photosynthesis in soybean. Agro. J. 83:316-22.
  12. Drevon, J.J., C. Abdelly, N. Amarger, M.E. Aouani, J. Aurag, H. Gherbi, M. Jebara, C. Lluch, H. Payre, Schump, O. Soussi, M. Sifi, and M. Trabelsi. 2001. An interdisciplinary research strategy to improve symbiotic nitrogen fixation and yield of common bean (Phaseolus vulgaris) in salinised areas of the Mediterranean basin. J. Biotechnol. 91:257–268
  13. Echevarria-Zomeno, S., D. Ariza, I. Jorge, C. Lenz, A. Del Campo, J.V. Jorrin, and R.M. Navarro. 2009. Changes in the protein profile of Quercus ilex leaves in response to drought stress and recovery. J. Plant Physiol. 166: 233-245.
  14. Esfahani MN, Mostajeran A. 2011. Rhizobial strain involvement in symbiosis efficiency of chickpea-rhizobia under drought stress: plant growth, nitrogen fixation and antioxidant enzyme activities. Acta Physiologiae Plantarum 33, 1075-1083
  15. Jiang Y., and Huang, B. 2002. Protein alternations in tall fescue in response to drought stress and abscisic acid. Crop Sci. 42: 202-207
  16. Gonzalez, E. M., Gordon, A. J., James, C. L. and Arrese-Igor, C. 1995. The role of sucrose synthase in the response of soybean nodules to drought. J. Exp. Bot. 46: 1515–1523
  17. Grahamm, P.H., and C.P.Vance. 2003. Legumes: importance and constraints to greater use. Plant Physiol. 131:872–877
  18. Hajheidari, M., M. Abdollahian-Noghabi, H. Askari, M. Heidari, S.Y. Sadeghian, E.S. Ober, and G. Hosseini Salekdeh. 2005. Proteome analysis of sugar beet leaves under drought stress. Proteomics 5: 950-960
  19. Hunt, S. and D. B. Layzell. 1993. Gas exchange of legume nodules and the regulation of nitrogenase activity. Annu Rev Plant Physiol. Plant Mo1. Biol. 44: 483-511
  20. Jamet, A., S. Sigaud, G. van de Sype, A. Puppo, and D. Herouart. 2003. Expression of the bacterial catalase genes during Sinorhizobium meliloti-Medicago sativa symbiosis and their crucial role during the infection process. Mol. Plant Microbe Interact. 16: 217–225
  21. Kanlaya, K.N., D. Sakda, W. Chaisiri, B. Sumontip, K. Manit, and T. Piyada. 2005. Protein profiles in response to salt stress in leaf sheaths of rice seedlings. Science Asia 31: 403-408.
  22. King, C.A., and L.C. Purcell. 2005. Inhibition of N2 fixation in soybean is associated with elevated ureides and amino acids. Plant Physiol. 137: 1389–1396
  23. Kottapulli, K.R., R. Rakwal, J. Shibato, G. Burow, D. Tissue, J. Burke, N. Puppala and M. Payton.2009. Physiology and proteomics of the water-deficit stress response in three constrasting peanut genotypes. Plant Cell and Environmental, 32: 380-407
  24. Larrainzar, E., S. Wienkoop, R. Ladrera, W. Weckwerth, C. Arrese-Igor, and E.M. Gonzalez. 2007. Medicago truncatula root nodule proteome analysis reveals differential plant and bacteroid responses to drought stress. Plant Physiol. 144: 1495–1507
  25. Marino, D., P. Frendo, R. Ladrera, A. Zabalza, A. Puppo, C. Arrese-Igor, and E.M. González. 2007. Nitrogen fixation control under drought stress. Localized or systemic? Plant Physiol. 143: 1968-1974
  26. Marino D., E.M. Gonzalez, P. Frendo, A. Puppo, and C. Arresse-Igor. 2007. NADPH recycling systems in oxidative stressed pea nodules: key role for the NADP+-dependent isocitrate dehydrogenase. Planta. 225: 413-421.
  27. Martinez, C.A., M.E. Loureiro, M.A. Olive, and M. Maestri. 2001. Differential responses of superoxide dismutase in freezing resistant Solanum curtilobum and freezing sensitive Solanum tubersum subjected to oxidative and water stress. Plant Sci. 160: 505-515.
  28. Matamoros, M.A., L.M. Baird, P.R. Escuredo, D.A. Dalton, F.R. Minchin, I. Iturbe-Ormaetxe, M.C. Rubio, J.F. Moran, A.J. Gordon, and M. Becana. 1999. Stress-induced legume root nodule senescence. Physiological, biochemical, and structural alterations. Plant Physiol. 121: 97–111
  29. Matamoros, M.A., D.A. Dalton, J. Ramos, M.R. Clemente, M.V.C. Rubio, and M. Becana. 2003. Biochemistry and molecular biology of antioxidant in the rhizobia-legume symbiosis. Plant Physiol. 133: 499-509
  30. Mhadhbi, H., M. Jebara, F. Limam, and M.E. Aouani. 2004. Rhizobial strain involvement in plant growth, nodule protein composition and antioxidant enzyme activities of chickpea–rhizobia symbioses: modulation by salt stress. Plant Physiol. Biochem. 42: 717–722
  31. Mhadhbi, H., M. Jebara, A. Zitoun, F. Limam, and M.E. Aouani. 2008. Symbiotic effectiveness and response to mannitol mediated osmotic stress of various chickpea-rhizobia associations. World J. Microbiol. Biotechnol. 24: 1027–1035
  32. Mnasri B., E. Aouani and R. Mhamdi. 2007. Nodulation and growth of common bean (Phaseolus vulgaris) under water deficiency. Soil Biol. Biochem. 39: 1744–1750
  33. Riccardi, F., P. Gazeau, D. De Vienne, and M. Zivy. 1998. Protein changes in response to progressive water deficit in maize. Plant Physiol. 117: 1253-1263
  34. Romdhame, S. B., Tajini, F., Trabelsi, M., Aouani, M. E. and Mhamdi, R. 2007. Competition for nodule formation between introduced strains of Mesorhizobium ciceri and the native populations of rhizobia nodulationg chickpea (Cicer arietinum) in Tunisia. World J. Microbiol. Biotechnol. 23: 1195-1201
  35. Rubio, M. C., Gonzalez, E. M., Minchin, F. R., Webb, K. J., Arrese-Igor, C., Ramos, J. and Becana, M. 2002. Effects of water stress on antioxidant enzymes of leaves and nodules of transgenic alfalfa overexpressing superoxide dismutases. Physiol. Plant. 115: 531–540
  36. Sabaghpour, S.H., R.S. Malhotra, and T. Banai. 2005. Registration of ‘Hashem’ Kabuli Chickpea. Crop Sci. 45: 2651
  37. Sabaghpour, S.H., Mahmodi A.A., Saeed A., Kamel M., Malhotra R.S. (2006) Study on chickpea drought tolerance lines under dryland condition of Iran. Indian J. Crop Sci. 1(1-2): 70-73.
  38. Santos R., Herouart D., Puppo A. and Touati D. 2000. Critical protective role of bacterial superoxide dismutase in Rhizobium–legume symbiosis. Mol Microbiol 38:750–759
  39. Schulze, J. 2004. How are nitrogen fixation rates regulated in legumes? J. Plant Nutr. Soil Sci. 167: 125–137
  40. Schulze, J., G. Temple, S.J. Temple, H. Beschow, and C.P. Vance. 2006. Nitrogen fixation by white lupin under phosphorus deficiency. Ann. Bot. 98: 731–740
  41. Serraj, R., and T.R. Sinclair. 1996. Processes contributing to N2-fixation insensitivity to drought in the soybean cultivar Jackson. Crop Sci. 36: 961–968
  42. Serraj, R., T.R. Sinclair, and L.C. Purcell. 1999. Symbiotic N2 fixation response to drought. J. Exp. Bot. 50: 143–155
  43. Soussi, M., C. Lluch, and A. Ocana. 1999. Comparative study of nitrogen fixation and carbon metabolism in two chickpea (Cicer arietinum) cultivars under salt stress. J. Exp. Bot. 50: 1701–1708
  44. Tejera, N.A., R. Campos, J. Sanjuan, and C. Lluch. 2004. Nitrogenase and antioxidant enzyme activities in Phaseolus vulgaris nodules formed by Rhizobium tropici isogenic strains with varying tolerance to salt stress. J. Plant physiol. 161: 329–338
  45. Vadez, V., T.R. Sinclair, and R. Serraj. 2000. Asparagine and ureide accumulation in nodules and shoots as feedback inhibitors of N2 fixation in soybean. Physiol. Plant. 110: 215–223
  46. Yu, Q. and Z. Rengel. 1999. Micronutrient deficiency influences plant growth and activities of superoxide dismutase in narrow-leafed lupins. Ann. Bot. 83: 175-182
  47. Xiong, J., B. Fu, H. Xu, and Y. Li. 2010. Proteomic analysis of PEG-simulated drought stress responsive proteins of rice leaves using a pyramiding rice line at the seedling stage. Botanical Studies, 51: 137-145
  48. Zali, H., Farahadfar E. and Sabaghpour S. H. 2011. Non-parametric analysis of phenotypic stability in chickpea (Cicer arietinum L.) genotypes in Iran. Crop Breeding Journal. 1(1): 89-101