Solubilizing efficiency of inorganic phosphate and insoluble organic phosphorus by cyanobacteria isolated from fish Culture ponds

Document Type : Research Paper

Authors

1 researcher/swri

2 university of tehran

10.22092/sbj.2024.362289.251

Abstract

Phosphorus plays a crucial role in aquatic ecosystems, serving as a vital nutrient that promotes the growth and enrichment of freshwater environments, particularly in warm-water fish ponds. It exists in various forms within aquatic systems, both soluble and insoluble. Cyanobacteria, a diverse group of oxygen-producing, photosynthetic prokaryotes, possess phosphatase activities that convert phosphorus into a soluble form. Thus, this study aimed to isolate, identify, and examine the phosphorus-dissolving capabilities of cyanobacteria found in fish culture ponds at a laboratory scale. The study evaluated the phosphorus dissolution efficiency of four cyanobacterial strains isolated from warm-water fish ponds: Chroococcus sp., Oscillatoria sp., Microcystis sp., and Gloeocapsa sp., using two phosphorus sources, tricalcium phosphate and calcium phytate, in both floating surface and biomass portions. The findings indicated that Microcystis sp. was particularly effective, dissolving 47.5 mg/liter of tricalcium phosphate and 67.3 mg/liter of calcium phytate in the floating portion. In the biomass, Gloeocapsa sp. demonstrated the highest efficiency in dissolving phosphorus from both tricalcium phosphate and calcium phytate, with concentrations of 35.5 mg/liter and 18.7 mg/liter, respectively. However, the study observed no significant difference in cyanobacterial growth under varying phosphorus concentrations and sources across the experimental groups. The research highlights that certain cyanobacteria isolated from fish culture ponds possess the capacity to dissolve phosphorus to a notable extent when provided with sufficient sources of insoluble phosphorus.

Keywords


  1. Achat, D. L., Morel, C., Bakker, M. R., Augusto, L., Pellerin, S., Gallet-Budynek, A., & Gonzalez, M. (2010). Assessing turnover of microbial biomass phosphorus: Combination of an isotopic dilution method with a mass balance model. Soil Biology and Biochemistry, 42(12), 2231–2240. https://doi.org/https://doi.org/10.1016/j.soilbio.2010.08.023
  2. Afkairin, A., Ippolito, J. A., Stromberger, M., & Davis, J. G. (2021). Solubilization of organic phosphorus sources by cyanobacteria and a commercially available bacterial consortium. Applied Soil Ecology, 162(January), 103900. https://doi.org/10.1016/j.apsoil.2021.103900
  3. Cameron, H. J., & Julian, G. R. (1988). Utilization of hydroxyapatite by Cyanobacteria as their sole source of phosphate and calcium. Plant and Soil, 109(1), 123–124. https://doi.org/10.1007/BF02197589
  4. Dorich, R. A., Nelson, D. W., & Sommers, L. E. (1985). Estimating Algal Available Phosphorus in Suspended Sediments by Chemical Extraction. Journal of Environmental Quality, 14(3), 400–405. https://doi.org/https://doi.org/10.2134/jeq1985.00472425001400030018x
  5. Feresin, E. G., Arcifa, M. S., Silva, L. H. S. da, & Esguícero, A. L. H. (2010). Primary productivity of the phytoplankton in a tropical Brazilian shallow lake: experiments in the lake and in mesocosms. Acta Limnologica Brasiliensia, 22(4), 384–396. https://doi.org/10.4322/actalb.2011.004
  6. Gen-Fu, W., & Xue-Ping, Z. (2005). Characterization of phosphorus-releasing bacteria in a small eutrophic shallow lake, Eastern China. Water Research, 39(19), 4623–4632. https://doi.org/https://doi.org/10.1016/j.watres.2005.08.036
  7. Gulati, A., Sharma, N., Vyas, P., Sood, S., Rahi, P., Pathania, V., & Prasad, R. (2010). Organic acid production and plant growth promotion as a function of phosphate solubilization by Acinetobacter rhizosphaerae strain BIHB 723 isolated from the cold deserts of the trans-Himalayas. Archives of Microbiology, 192(11), 975–983. https://doi.org/10.1007/s00203-010-0615-3
  8. Hendrayanti, D., Khoiriyah, I., Fadilah, N. and Salamah, A. 2018. Diversity of N2-fixing cyanobacteria in organic rice field during the cycle of rice crops. Inventing Prosperous Future through Biological Research and Tropical Biodiversity Management.
  9. https://doi.org/10.1063/1.5050107.
  10. Hu, X. J., Li, Z. J., Cao, Y. C., Zhang, J., Gong, Y. X., & Yang, Y. F. (2010). Isolation and identification of a phosphate-solubilizing bacterium Pantoea stewartii subsp. stewartii g6, and effects of temperature, salinity, and pH on its growth under indoor culture conditions. Aquaculture International, 18(6), 1079–1091. https://doi.org/10.1007/s10499-010-9325-8
  11. Johansson, C., & Bergman, B. (2006). Reconstitution of the symbiosis of Gunnera manicata Linden: Cyanobacterial specificity. New Phytologist, 126, 643–652. https://doi.org/10.1111/j.1469-8137.1994.tb02960.x
  12. John, D. M., & Museum, N. H. (2012). The Freshwater algal flora of the British Isles: an identification guide to freshwater and terrestrial algae. Choice Reviews Online, 49(12), 49-6880-49–6880. https://doi.org/10.5860/choice.49-6880
  13. Khan, M. S., Zaidi, A., Wani, P. A. (2007). Review article Methods for studying root colonization by introduced. Agronomie, 23, 407–418. https://doi.org/10.1051/agro
  14. Kim, L.-H., Choi, E., & Stenstrom, M. K. (2003). Sediment characteristics, phosphorus types and phosphorus release rates between river and lake sediments. Chemosphere, 50(1), 53–61. https://doi.org/https://doi.org/10.1016/S0045-6535(02)00310-7
  15. Komárek, J., Kaštovský, J., Mareš, J., & Johansen, J. R. (2014). Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia, 86(4), 295–335.
  16. Kucey, R. M. N. (1983). Phosphate-solubilizing bacteria and fungi in various cultivated and virgin Alberta soils. Canadian Journal of Soil Science, 63, 671–678.
  17. Kucey, R. M. N., Janzen, H. H., & Leggett, M. E. (1989). Microbially Mediated Increases in Plant-Available Phosphorus (N. C. Brady (ed.); Vol. 42, pp. 199–228). Academic Press. https://doi.org/https://doi.org/10.1016/S0065-2113(08)60525-8
  18. Kulik, M. M. (1995). The potential for using cyanobacteria (blue-green algae) and algae in the biological control of plant pathogenic bacteria and fungi. European Journal of Plant Pathology, 101(6), 585–599. https://doi.org/10.1007/BF01874863
  19. Larsson, S. E., & Toolanen, G. (1986). Posterior fusion for atlanto-axial subluxation in rheumatoid arthritis. Spine, 11(6), 525–530. https://doi.org/10.1097/00007632-198607000-00004
  20. Mandal, B., Das, S. C., & Mandal, L. N. (1992). Effect of growth and subsequent decomposition of cyanobacteria on the transformation of phosphorus in submerged soils. Plant and Soil, 143(2), 289–297. https://doi.org/10.1007/BF00007885
  21. Mishra, U., Choudhary, K. K., Pabbi, S., Dhar, D., & Singh, P. (2005). Influence of blue green algae and Azolla inoculation on specific soil enzymes under paddy cultivation. Asian Journal of Microbiology, Biotechnology and Environmental Sciences, 7, 9–12.
  22. Padmavathi, P., & Prasad Durga, M. K. (2007). Egular Aper. Regular Paper, 24, 32–43.
  23. Pal, M., Yesankar, P. J., Dwivedi, A., & Qureshi, A. (2020). Biotic control of harmful algal blooms (HABs): A brief review. Journal of Environmental Management, 268(April), 110687. https://doi.org/10.1016/j.jenvman.2020.110687
  24. Pandey, V. D., & Parveen, S. (2011). Alkaline Phosphatase Activity in Cyanobacteria : Indian Journal of Fundamenal and Applied Life Sciences, 1(4), 295–303.
  25. Paul, D., & Sinha, S. N. (2013). Isolation of phosphate solubilizing bacteria and total heterotrophic bacteria from river water and study of phosphatase activity of phosphate solubilizing bacteria. Advances in Applied Science Research, 4(4), 409–412.
  26. Rai, A.N., Soderback, E & Bergman, B. (2000). Cyanobacerium- plaqnt symbioses. 147(116): 449-4.
  27. Rodriguez, A. A., Stella, M. M,, Zulpa, G & Zaccaro, M.C. (2006). Effects of cyanobacterial extracellular products and gibberellic acid on salinity tolerancein oryza sativa L., Saline system. 206:2-7.
  28. Riegman, R., & Mur, L. R. (1986). Phytoplankton growth and phosphate uptake (for P limitation) by natural phytoplankton populations from the Loosdrecht lakes (The Netherlands). Limnology and Oceanography, 31(5), 983–988. https://doi.org/10.4319/lo.1986.31.5.0983
  29. Rodrı́guez, H., & Fraga, R. (1999). Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances, 17(4), 319–339. https://doi.org/https://doi.org/10.1016/S0734-9750(99)00014-2
  30. Sugunan, V. (2000). Ecology and fishery management of reservoirs in India. Hydrobiologia, 430, 121–147. https://doi.org/10.1023/A:1004081316185
  31. Whitton, B. A., Grainger, S. L., Hawley, G. R., & Simon, J. W. (1991). Cell-bound and extracellular phosphatase activities of cyanobacterial isolates. Microbial Ecology, 21(1), 85–98. https://doi.org/10.1007/BF02539146
  32. Wolf, A. M., Baker, D. E., Pionke, H. B., & Kunishi, H. M. (1985). Soil Tests for Estimating Labile, Soluble, and Algae-Available Phosphorus in Agricultural Soils. Journal of Environmental Quality, 14(3), 341–348. https://doi.org/https://doi.org/10.2134/jeq1985.00472425001400030008x
  33. Wilson, L. T., (2006). Cyanobacteria: A Potential Nitrogen Source in Rice Field, texas rice. 6(6): 9-10.
  34. Yandigeri, M. S., Yadav, A. K., Srinivasan, R., Kashyap, S., & Pabbi, S. (2011). Studies on mineral phosphate solubilization by cyanobacteria Westiellopsis and Anabaena. Microbiology, 80(4), 558–565. https://doi.org/10.1134/S0026261711040229