The threat of Salmonella in soil and the necessity of its continuous tracking with novel diagnostic approaches

Document Type : review articles

Authors

1 PhD student, Department of Soil science, Faculty of Agriculture,Shahid Chamran University of Ahvaz, Ahvaz, Iran

2 Associate Professor, Department of Soil Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran

3 3. Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education, and Extension Organization (AREEO), Karaj, Iran

4 Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education, and Extension Organization (AREEO), Karaj, Iran

10.22092/sbj.2024.363223.255

Abstract

Salmonella is a common and persistent pathogen in soil environments, posing a significant threat to safe food production worldwide. Given the vital role of soil in agriculture, it is crucial to be cautious about the spread of Salmonella in soil and to employ effective methods for its detection and control. The increasing prevalence of Salmonella can be attributed to the rapid expansion of agriculture and industry, leading to the contamination of fertilizers and water sources with the bacterium. The survival of Salmonella in soil is influenced by various physical, chemical, and biological factors, leading to the continuous colonization of plant organs. Consequently, given the importance of healthy agricultural products, there is an increasing demand for new methods to investigate and identify bacteria in these foods. Several techniques exist for the identification of harmful bacteria in soil. However, using nanosensors as an advanced tool for bacterial detection is very promising, as it can effectively overcome the limitations of other methods. This review study examines the mechanisms of Salmonella contamination in soil and its interaction with plants, highlighting the importance of using biosensors for faster and more accurate detection of this bacterium in soil.

Keywords


  1. Abbaspour, A., Norouz-Sarvestani, F., Noori, A. and Soltani, N. 2015. Aptamer-conjugated silver nanoparticles for electrochemical dual-aptamer-based sandwich detection of staphylococcus aureus. Biosensors and Bioelectronics 68 :149-155.
  2. Agbaje, M., Begum, R.H., Oyekunle, M.A., Ojo, O.E. and Adenubi, O.T. Evolution of Salmonella nomenclature: a critical note. Folia microbiologica 56: 479- 503
  3. Akil, L., Ahmad, H.A. and Reddy, R.S. 2014. Effects of climate change on Salmonella Foodborne pathogens and disease 11(12): 974-980.
  4. Alafeef, M., Moitra, P. and Pan, D. 2020. Nano-enabled sensing approaches for pathogenic bacterial detection. Biosensors and Bioelectronics, 165, 112276.
  5. Al-Taai, S.H.H. 2021, June. Soil pollution-causes and effects. In IOP conference series: earth and environmental science,790, 012009.
  6. Alvarenga, P. 2022. Soil Pollution Assessment and Sustainable Remediation Strategies. Environments 9(4):
  7. Amagliani, G., Brandi, G. and Schiavano, G.F. 2012. Incidence and role of Salmonella in seafood safety. Food Research International 45(2): 780-788.
  8. Andino, A. and Hanning, I. Salmonella enterica: survival, colonization, and virulence differences among serovars. The Scientific World Journal  2015:  1-17.
  9. Arrus, K.M., Holley, R.A., Ominski, K.H., Tenuta, M. and Blank, G. 2006. Influence of temperature on Salmonella survival in hog manure slurry and seasonal temperature profiles in farm manure storage reservoirs. Livestock Science 102(3): 226-236.
  10. Arthurson, V., Sessitsch, A. and Jäderlund, L. 2011. Persistence and spread of Salmonella enterica serovar Weltevreden in soil and on spinach plants. FEMS microbiology letters 314(1): 67-74.
  11. Aruscavage, D., Lee, K., Miller, S. and LeJeune, J.T. 2006. Interactions affecting the proliferation and control of human pathogens on edible plants. Journal of food science 71(8): 89-99.
  12. Awang, M.S., Bustami, Y., Hamzah, H.H., Zambry, N.S., Najib, M.A., Khalid, M.F., Aziah, I. and Abd Manaf, A. 2021. Advancement in salmonella detection methods: From conventional to electrochemical-based sensing detection. Biosensors 11(9): 346.
  13. Barak, J.D., Jahn, C.E., Gibson, D.L. and Charkowski, A.O. 2007. The role of cellulose and O-antigen capsule in the colonization of plants by Salmonella enterica. Molecular Plant-Microbe Interactions, 20(9): 1083-1091.
  14. Batz, M.B., Hoffmann, S. and Morris Jr, J.G. Ranking the risks: the 10 pathogen-food combinations with the greatest burden on public health. Emerging Pathogens Institute, University of Florida.
  15. Baumgardner, D.J. 2012. Soil-related bacterial and fungal infections. The Journal of the American Board of Family Medicine 25(5): 734-744.
  16. Berendonk, T.U., Manaia, C.M., Merlin, C., Fatta-Kassinos, D., Cytryn, E., Walsh, F., Bürgmann, H., Sørum, H., Norström, M., Pons, M.N. and Kreuzinger, N. 2015. Tackling antibiotic resistance: the environmental framework. Nature reviews microbiology 13(5): 310-317.
  17. Berger, C.N., Shaw, R.K., Brown, D.J., Mather, H., Clare, S., Dougan, G., Pallen, M.J. and Frankel, G. 2009. Interaction of Salmonella enterica with basil and other salad leaves. The ISME journal 3(2): 261-265.
  18. Bernstein, N., Sela, S. and Neder-Lavon, S. 2007. Assessment of contamination potential of lettuce by Salmonella enterica serovar Newport added to the plant growing medium. Journal of food protection 70(7): 1717-1722.
  19. Boore, A.L., Hoekstra, R.M., Iwamoto, M., Fields, P.I., Bishop, R.D. and Swerdlow, D.L. 2015. Salmonella enterica infections in the United States and assessment of coefficients of variation: a novel approach to identify epidemiologic characteristics of individual serotypes 1996–2011. PloS one, 10(12), 0145416.
  20. Brennan, F.P., Moynihan, E., Griffiths, B.S., Hillier, S., Owen, J., Pendlowski, H. and Avery, L.M. 2014. Clay mineral type effect on bacterial enteropathogen survival in soil. Science of the Total Environment 468: 302-305.
  21. Cao, Y., Halane, M.K., Gassmann, W. and Stacey, G. 2017. The role of plant innate immunity in the legume-rhizobium symbiosis. Annual review of plant biology 68: 535-561.
  22. Cao, Y., Halane, M.K., Gassmann, W. and Stacey, G. 2017. The role of plant innate immunity in the legume-rhizobium symbiosis. Annual review of plant biology 68: 535-561.
  23. Chakraborty, J., Chaudhary, A.A., Khan, S.U.D., Rudayni, H.A., Rahaman, S.M. and Sarkar, H. 2022. CRISPR/Cas-based biosensor as a new age detection method for pathogenic bacteria. ACS omega 7(44): 39562-39573.
  24. Chalupowicz, L., Manulis-Sasson, S., Barash, I., Elad, Y., Rav-David, D. and Brandl, M.T. 2021. Effect of plant systemic resistance elicited by biological and chemical inducers on the colonization of the lettuce and basil leaf apoplast by Salmonella enterica. Applied and Environmental Microbiology, 87(24), 01151-21.
  25. Chandler, S., Van Hese, N., Coutte, F., Jacques, P., Höfte, M. and De Vleesschauwer, D. 2015. Role of cyclic lipopeptides produced by Bacillus subtilis in mounting induced immunity in rice (Oryza sativa L.). Physiological and molecular plant pathology 91: 20-30.
  26. Chandrakala, A. and Reniprabha, A., 2021. Screening of bioactive compound from soil mycoflora and its therapeutic effect on fish borne pathogens of grass carp, Ctenopharyngodon idella (Valenciennes). International Journal of Fisheries and Aquatic Studies 9(3): 272-277
  27. Danyluk, M.D., Nozawa‐Inoue, M., Hristova, K.R., Scow, K.M., Lampinen, B. and Harris, L.J. 2008. Survival and growth of Salmonella Enteritidis PT 30 in almond orchard soils. Journal of Applied Microbiology 104(5): 1391-1399.
  28. Deng, G., Zha, H., Luo, H. and Zhou, Y. 2023. Aptamer-conjugated gold nanoparticles and their diagnostic and therapeutic roles in cancer. Frontiers in Bioengineering and Biotechnology, 11, 1118546.
  29. Dunn, L.L., Sharma, V., Chapin, T.K., Friedrich, L.M., Larson, C.C., Rodrigues, C., Jay-Russell, M., Schneider, K.R. and Danyluk, M.D. 2022. The prevalence and concentration of Salmonella enterica in poultry litter in the southern United States. Plos one, 17(5), 0268231.
  30. Efremova, S., Parfenova, E. and Bodrov, A. 2020. Environmental hazard of soil contamination by heavy metals. In E3S Web of Conferences ,208, 01021.
  31. Eng, S.K., Pusparajah, P., Ab Mutalib, N.S., Ser, H.L., Chan, K.G. and Lee, L.H. 2015. Salmonella: a review on pathogenesis, epidemiology and antibiotic resistance. Frontiers in Life Science 8(3): 284-293.
  32. Erickson, M.C., Habteselassie, M.Y., Liao, J., Webb, C.C., Mantripragada, V., Davey, L.E. and Doyle, M.P. 2014. Examination of factors for use as potential predictors of human enteric pathogen survival in soil. Journal of Applied Microbiology 116(2): 335-349.
  33. Fahed, M., Barron, G.C. and Steffens, D.C. 2020. Ethical and logistical considerations of caring for older adults on inpatient psychiatry during the COVID-19 pandemic. The American Journal of Geriatric Psychiatry 28(8): 829-834.
  34. Fonseca, J.M., Ravishankar, S., Sanchez, C.A., Park, E. and Nolte, K.D. 2020. Assessing the food safety risk posed by birds entering leafy greens fields in the US southwest. International Journal of Environmental Research and Public Health ,17(23), 8711.
  35. Fornefeld, E., Schierstaedt, J., Jechalke, S., Grosch, R., Schikora, A. and Smalla, K. 2017. Persistence of Salmonella Typhimurium LT2 in soil enhanced after growth in lettuce medium. Frontiers in Microbiology, 8, 757.
  36. Franz, C., Besten,  ,  Bohnlen, C.,  Gareis, M.,  Zwietering, M., and  Fusco, V. 2019. Reprint of microbial food safety in the 21st century: emerging challenges and foodborne pathogenic bacteria. Trends in Food Science and Technology 84: 34–37.
  37. Franz, E. and van Bruggen, A.H. 2008. Ecology of coli O157: H7 and Salmonella enterica in the primary vegetable production chain. Critical reviews in microbiology 34(3-4): 143-161.
  38. Franz, E., van Diepeningen, A.D., de Vos, O.J. and van Bruggen, A.H. 2005. Effects of cattle feeding regimen and soil management type on the fate of Escherichia coli O157: H7 and Salmonella enterica serovar Typhimurium in manure, manure-amended soil, and lettuce. Applied and environmental microbiology 71(10) :6165-6174.
  39. Fu, J., Park, B., Siragusa, G., Jones, L., Tripp, R., Zhao, Y. and Cho, Y.J. 2008. An Au/Si hetero-nanorod-based biosensor for Salmonella Nanotechnology, 19(15), pp 155502.
  40. Ganz, K. and Gill, A. 2013. Inhibition of polymerase chain reaction for the detection of Escherichia coli O157: H7 and Salmonella enterica on walnut kernels. Food microbiology 35(1): 15-20.
  41. Gene, S.M., Hoekstra, P.F., Hannam, C., White, M., Truman, C., Hanson, M.L. and Prosser, R.S. 2019. The role of vegetated buffers in agriculture and their regulation across Canada and the United States. Journal  of  Environmental Management 243: 12-21.
  42. Glaize, A., Young, M., Harden, L., Gutierrez-Rodriguez, E. and Thakur, S. 2021. The effect of vegetation barriers at reducing the transmission of Salmonella and Escherichia coli from animal operations to fresh produce. International Journal of Food Microbiology  347: 109196.
  43. Gomes, C., Da Silva, P., Moreira, R.G., Castell-Perez, E., Ellis, E.A. and Pendleton, M. 2009. Understanding E. coli internalization in lettuce leaves for optimization of irradiation treatment. International journal of food microbiology 135(3): 238-247.
  44. Gruszynski, K., Pao, S., Kim, C., Toney, D., Wright, K., Ross, P.G., Colon, A. and Levine, S. 2014. Evaluating wildlife as a potential source of salmonella serotype Newport (JJPX 01.0061) contamination for tomatoes on the eastern shore of Virginia. Zoonoses and public health 61(3): 202-207.
  45. Gu, G., Hu, J., Cevallos-Cevallos, J.M., Richardson, S.M., Bartz, J.A. and van Bruggen, A.H. 2011. Internal colonization of Salmonella enterica serovar Typhimurium in tomato plants. PloS one, 6(11), pp 27340.
  46. Guan, T.T., Holley, R.A., Guan, T.T. and Holley, R.A., 2003. pathogen survival in swine manure environments and transmission of human enteric illness—a review a. Hog manure management, the environment and human health, pp 51-71.
  47. Guo, M. and Saif, L.J. 2003. IV, 3. Pathogenesis of enteric calicivirus infections. In Perspectives in Medical Virology 9: 489-503.
  48. Gupta, D.K., Huang, H.G., Yang, X.E., Razafindrabe, B.H.N. and Inouhe, M., 2010. The detoxification of lead in Sedum alfredii H. is not related to phytochelatins but the glutathione. Journal of hazardous materials 177(1-3): 437-444.
  49. Hairom, N.H.H., Soon, C.F., Mohamed, R.M.S.R., Morsin, M., Zainal, N., Nayan, N., Zulkifli, C.Z. and Harun, N.H. 2021. A review of nanotechnological applications to detect and control surface water pollution. Environmental Technology & Innovation ,24, 102032.
  50. Hansen-Wester, I., Stecher, B. and Hensel, M. 2002. Type III secretion of Salmonella enterica serovar Typhimurium translocated effectors and SseFG. Infection and immunity 70(3): 1403-1409.
  51. Harrand, A.S., Kovac, J., Carroll, L.M., Guariglia-Oropeza, V., Kent, D.J. and Wiedmann, M. 2019. Assembly and characterization of a pathogen strain collection for produce safety applications: Pre-growth conditions have a larger effect on peroxyacetic acid tolerance than strain diversity. Frontiers in Microbiology , 10, 1223.
  52. Holley, R.A., Arrus, K.M., Ominski, K.H., Tenuta, M. and Blank, G. 2006. Salmonella survival in manure‐treated soils during simulated seasonal temperature exposure. Journal of environmental quality 35(4): 1170-1180.
  53. Hu, J., Jiang, Y.Z., Tang, M., Wu, L.L., Xie, H.Y., Zhang, Z.L. and Pang, D.W. 2018. Colorimetric-fluorescent-magnetic nanosphere-based multimodal assay platform for Salmonella Analytical chemistry 91(1): 1178-1184.
  54. Huang, T.K. and Puchta, H. 2021. Novel CRISPR/Cas applications in plants: from prime editing to chromosome engineering. Transgenic research 30: 529-549.
  55. Hurley, D., McCusker, M.P., Fanning, S. and Martins, M. 2014. Salmonella–host interactions–modulation of the host innate immune system. Frontiers in immunology, 5, 481.
  56. Hwang, J., Kwon, D., Lee, S. and Jeon, S. 2016. Detection of Salmonella bacteria in milk using gold-coated magnetic nanoparticle clusters and lateral flow filters. Rsc Advances 6(54): 48445-48448.
  57. Islam, M., Doyle, M.P., Phatak, S.C., Millner, P. and Jiang, X. 2005. Survival of Escherichia coli O157: H7 in soil and on carrots and onions grown in fields treated with contaminated manure composts or irrigation water. Food microbiology 22(1): 63-70.
  58. Jacobsen , and  Tina , B. 2012. Soil survival of Salmonella and transfer to freshwater and fresh produce.Food Research International 45: 557–566.
  59. Jechalke , S. Schierstaedt , J. Becker , M. Fl Jacobsen, C.S. and Bech, T.B. 2012. Soil survival of Salmonella and transfer to freshwater and fresh produce. Food Research International 45(2): 557-566.
  60. Jechalke, S., Schierstaedt, J., Becker, M., Flemer, B., Grosch, R., Smalla, K. and Schikora, A. 2019. Salmonella establishment in agricultural soil and colonization of crop plants depend on soil type and plant species. Frontiers in microbiology, 10, 967.
  61. Jia, F., Duan, N., Wu, S., Dai, R., Wang, Z. and Li, X. 2016. Impedimetric Salmonella aptasensor using a glassy carbon electrode modified with an electrodeposited composite consisting of reduced graphene oxide and carbon nanotubes. Microchimica Acta 183: 337-344.
  62. Jiang, X., Chen, Z. and Dharmasena, M. 2015. The role of animal manure in the contamination of fresh food. In Advances in microbial food safety. Woodhead Publishing 2: 312-350.
  63. Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A. and Charpentier, E. 2012. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096): 816-821.
  64. Johnson, N., Litt, P.K., Kniel, K.E. and Bais, H. 2020. Evasion of plant innate defense response by Salmonella on lettuce. Frontiers in Microbiology, 11, 500
  65. Khaledian, S., Nikkhah, M., Shams-bakhsh, M. and Hoseinzadeh, S. 2017. A sensitive biosensor based on gold nanoparticles to detect Ralstonia solanacearum in soil. Journal of General Plant Pathology 83: 231-239.
  66. Kroupitski, Y., Golberg, D., Belausov, E., Pinto, R., Swartzberg, D., Granot, D. and Sela, S. 2009. Internalization of Salmonella enterica in leaves is induced by light and involves chemotaxis and penetration through open stomata. Applied and environmental microbiology 75(19): 6076-6086.
  67. Kroupitski, Y., Gollop, R., Belausov, E., Pinto, R. and Sela, S. 2019. Salmonella enterica growth conditions influence lettuce leaf internalization. Frontiers in Microbiology, 10, 639.
  68. Kumar, A., Malinee, M., Dhiman, A., Kumar, A. and Sharma, T.K. 2019 . Aptamer technology for the detection of foodborne pathogens and toxins. Elsevier, Netherlands.
  69. Kumar, H., Kuča, K., Bhatia, S.K., Saini, K., Kaushal, A., Verma, R., Bhalla, T.C. and Kumar, D. 2020. Applications of nanotechnology in sensor-based detection of foodborne pathogens. Sensors, 20(7), 1966.
  70. Ladeiro, B. 2012. Saline agriculture in the 21st century: using salt contaminated resources to cope food requirements. J Bot, 2012, 1.
  71. Law, J.W.F., Ab Mutalib, N.S., Chan, K.G. and Lee, L.H. 2015. Rapid methods for the detection of foodborne bacterial pathogens: principles, applications, advantages and limitations. Frontiers in microbiology, 5, 770.
  72. Lee, K.M., Runyon, M., Herrman, T.J., Phillips, R. and Hsieh, J. 2015. Review of Salmonella detection and identification methods: Aspects of rapid emergency response and food safety. Food control 47: 264-276.
  73. Li, L., Li, Q., Liao, Z., Sun, Y., Cheng, Q., Song, Y., Song, E. and Tan, W. 2018. Magnetism-resolved separation and fluorescence quantification for near-simultaneous detection of multiple pathogens. Analytical chemistry 90(15): 9621-9628.
  74. Liu, C., Hofstra, N. and Franz, E. 2013. Impacts of climate change on the microbial safety of pre-harvest leafy green vegetables as indicated by Escherichia coli O157 and Salmonella spp. International journal of food microbiology 163(2-3): 119-128.
  75. Liu, H., Whitehouse, C.A. and Li, B. 2018. Presence and persistence of Salmonella in water: the impact on microbial quality of water and food safety. Frontiers in Public Health, 6, 159.
  76. Liu, L., Zhao, G., Li, X., Xu, Z., Lei, H. and Shen, X. 2022. Development of rapid and easy detection of Salmonella in food matrics using RPA-CRISPR/Cas12a method. LWT, 162, 113443.
  77. Ma, L., Peng, L., Yin, L., Liu, G. and Man, S. 2021. CRISPR-Cas12a-powered dual-mode biosensor for ultrasensitive and cross-validating detection of pathogenic bacteria. Acs Sensors, 6(8), 2920-2927.
  78. Ma, X., Song, L., Zhou, N., Xia, Y. and Wang, Z. 2017. A novel aptasensor for the colorimetric detection of typhimurium based on gold nanoparticles. International journal of food microbiology 245:1-5.
  79. Mays, C., Garza, G.L., Waite-Cusic, J., Radniecki, T.S. and Navab-Daneshmand, T. 2021. Impact of biosolids amendment and wastewater effluent irrigation on enteric antibiotic-resistant bacteria–a greenhouse study. Water Research X, 13, 100119.
  80. McQuiston, J.R., Waters, R.J., Dinsmore, B.A., Mikoleit, M.L. and Fields, P.I. 2011. Molecular determination of H antigens of Salmonella by use of a microsphere-based liquid array. Journal of clinical microbiology 49(2): 565-573.
  81. Min, H.J., Mina, H.A., Deering, A.J., Robinson, J.P. and Bae, E. 2022. Detection of Salmonella Typhimurium with Gold Nanoparticles Using Quartz Crystal Microbalance Biosensor. Sensors, 22(22),8928.
  82. Mombo, S., Foucault, Y., Deola, F., Gaillard, I., Goix, S., Shahid, M., Schreck, E., Pierart, A. and Dumat, C. 2016. Management of human health risk in the context of kitchen gardens polluted by lead and cadmium near a lead recycling company. Journal of soils and sediments 16: 1214-1224.
  83. Morgan, E., Campbell, J.D., Rowe, S.C., Bispham, J., Stevens, M.P., Bowen, A.J., Barrow, P.A., Maskell, D.J. and Wallis, T.S. 2004. Identification of host‐specific colonization factors of Salmonella enterica serovar Typhimurium. Molecular microbiology 54(4): 994-1010.
  84. Morris, C.E. and Monier, J.M. 2003. The ecological significance of biofilm formation by plant-associated bacteria. Annual review of phytopathology 41(1): 429-453.
  85. Mulatua Hailu, M. 2018. Remediation of soil contaminated by Salmonella enterica to expedite plant or replant of vegetables (Doctoral dissertation).
  86. Murphy, C.M., Weller, D.L., Reiter, M.S., Bardsley, C.A., Eifert, J., Ponder, M., Rideout, S.L. and Strawn, L.K. 2022. Anaerobic soil disinfestation, amendment‐type, and irrigation regimen influence Salmonella survival and die‐off in agricultural soils. Journal of applied microbiology 132(3): 2342-2354.
  87. Oh, S.Y., Heo, N.S., Shukla, S., Cho, H.J., Vilian, A.E., Kim, J., Lee, S.Y., Han, Y.K., Yoo, S.M. and Huh, Y.S. Development of gold nanoparticle-aptamer-based LSPR sensing chips for the rapid detection of Salmonella typhimurium in pork meat. Scientific reports, 7(1), 10130.
  88. Ölmez, H. and Temur, S.D. 2010. Effects of different sanitizing treatments on biofilms and attachment of Escherichia coli and Listeria monocytogenes on green leaf lettuce. LWT-Food Science and Technology 43(6): 964-970.
  89. Omara, A.E.D., Elsakhawy, T., Alshaal, T., El-Ramady, H., Kovács, Z. and Fári, M. 2019. Nanoparticles: a novel approach for sustainable agro-productivity. Environment, Biodiversity and Soil Security 3(2019): 29-62.
  90. Ongeng, D., Geeraerd, A.H., Springael, D., Ryckeboer, J., Muyanja, C. and Mauriello, G. 2015. Fate of Escherichia coli O157: H7 and Salmonella enterica in the manure-amended soil-plant ecosystem of fresh vegetable crops: a review. Critical reviews in microbiology 41(3): 273-294.
  91. Paniel, N. and Noguer, T. Detection of Salmonella in food matrices, from conventional methods to recent aptamer-sensing technologies. Foods, 8(9), 371.
  92. Park, S.H., Aydin, M., Khatiwara, A., Dolan, M.C., Gilmore, D.F., Bouldin, J.L., Ahn, S. and Ricke, S.C. 2014. Current and emerging technologies for rapid detection and characterization of Salmonella in poultry and poultry products. Food microbiology 38: 250-262.
  93. Parker, D.B., Malone, G.W. and Walter, W.D. 2011. Vegetative environmental buffers and exhaust fan deflectors for reducing downwind odor and VOCs from tunnel-ventilated swine barns. Transactions of the ASABE 55(1): 227-240.
  94. Phan‐Thien, K., Metaferia, M.H., Bell, T.L., Bradbury, M.I., Sassi, H.P., de Ogtrop, F.F., Suslow, T.V. and McConchie, R. 2020. Effect of soil type and temperature on survival of Salmonella enterica in poultry manure‐amended soils. Letters in Applied Microbiology 71(2): 210-217.
  95. Pornsukarom, S. and Thakur, S. 2016. Assessing the impact of manure application in commercial swine farms on the transmission of antimicrobial resistant Salmonella in the environment. PloS one, 11(10),0164621.
  96. Pratap, C.B., Kumar, G., Patel, S.K., Verma, A.K., Shukla, V.K., Kumar, K. and Nath, G. 2013. Targeting of putative fimbrial gene for detection of Typhi in typhoid fever and chronic typhoid carriers by nested PCR. The Journal of Infection in Developing Countries 7(07): 520-527.
  97. Quintela, I.A., de Los Reyes, B.G., Lin, C.S. and Wu, V.C. 2019. Simultaneous colorimetric detection of a variety of Salmonella spp. in food and environmental samples by optical biosensing using oligonucleotide-gold nanoparticles. Frontiers in microbiology, 10, 1138.
  98. Reeves, M.W., Evins, G.M., Heiba, A.A., Plikaytis, B.D. and Farmer 3rd, J.J. 1989. Clonal nature of Salmonella typhi and its genetic relatedness to other salmonellae as shown by multilocus enzyme electrophoresis, and proposal of Salmonella bongori comb. nov. Journal of clinical microbiology 27(2): 313-320.
  99. Rivera, D., Toledo, V., Reyes-Jara, A., Navarrete, P., Tamplin, M., Kimura, B., Wiedmann, M., Silva, P. and Switt, A.I.M. 2018. Approaches to empower the implementation of new tools to detect and prevent foodborne pathogens in food processing. Food microbiology 75: 126-132.
  100. Rocha, A.D.D.L., Ferrari, R.G., Pereira, W.E., Lima, L.A.D., Givisiez, P.E.N., Moreno-Switt, A.I., Toro, M., Delgado-Suárez, E.J., Meng, J. and Oliveira, C.J.B.D. 2022. Revisiting the biological behavior of Salmonella enterica in hydric resources: A meta-analysis study addressing the critical role of environmental water on food safety and public health. Frontiers in Microbiology, 13, 802625.
  101. Sande, M.G., Rodrigues, J.L., Ferreira, D., Silva, C.J. and Rodrigues, L.R. Novel biorecognition elements against pathogens in the design of state-of-the-art diagnostics. Biosensors, 11(11), 418.
  102. Schierstaedt, J., Jechalke, S., Nesme, J., Neuhaus, K., Sørensen, S.J., Grosch, R., Smalla, K. and Schikora, A. 2020. Salmonella persistence in soil depends on reciprocal interactions with indigenous microorganisms. Environmental Microbiology 22(7) : 2639-2652.
  103. Schlatter, D., Kinkel, L., Thomashow, L., Weller, D. and Paulitz, T. Disease suppressive soils: new insights from the soil microbiome. Phytopathology 107(11): 1284-1297.
  104. Semenov, A.M., Kuprianov, A.A. and Van Bruggen, A.H. Transfer of enteric pathogens to successive habitats as part of microbial cycles. Microbial ecology 60: 239-249.
  105. Shabbir, M.A.B., Shabbir, M.Z., Wu, Q., Mahmood, S., Sajid, A., Maan, M.K., Ahmed, S., Naveed, U., Hao, H. and Yuan, Z. 2019. CRISPR-cas system: biological function in microbes and its use to treat antimicrobial resistant pathogens. Annals of clinical microbiology and antimicrobials 18:1-9.
  106. Shah, J., Desai, P.T., Chen, D., Stevens, J.R. and Weimer, B.C. 2013. Preadaptation to cold stress in Salmonella enterica serovar Typhimurium increases survival during subsequent acid stress exposure. Applied and environmental microbiology 79(23): 7281-7289.
  107. Shahrokhian, S. and Ranjbar, S. 2018. Aptamer immobilization on amino-functionalized metal–organic frameworks: An ultrasensitive platform for the electrochemical diagnostic of Escherichia coli O157: H7. Analyst 143(13): 3191-3201.
  108. Shahsavar, K., Hosseini, M., Shokri, E., Ganjali, M.R. and Ju, H. 2017. A sensitive colorimetric aptasensor with a triple-helix molecular switch based on peroxidase-like activity of a DNAzyme for ATP detection. Analytical Methods 9(32): 4726-4731.
  109. Shams, S., Bakhshi, B., Tohidi Moghadam, T. and Behmanesh, M. 2019. A sensitive gold-nanorods-based nanobiosensor for specific detection of Campylobacter jejuni and Campylobacter coli. Journal of Nanobiotechnology 17(1): 1-13.
  110. Shaw, R.K., Lasa, I., García, B.M., Pallen, M.J., Hinton, J.C., Berger, C.N. and Frankel, G. 2011. Cellulose mediates attachment of Salmonella enterica Serovar Typhimurium to tomatoes. Environmental Microbiology Reports 3(5): 569-573.
  111. Shen, Y., Xu, L. and Li, Y. 2021. Biosensors for rapid detection of Salmonella in food: A review. Comprehensive Reviews in Food Science and Food Safety 20(1): 149-197.
  112. Shi, X., Wu, Z., Namvar, A., Kostrzynska, M., Dunfield, K. and Warriner, K. 2009. Microbial population profiles of the microflora associated with pre‐and postharvest tomatoes contaminated with Salmonella typhimurium or Salmonella montevideo. Journal of applied microbiology 107(1): 329-338.
  113. Shokri, E., Hosseini, M., Boldaji, M.N., Shahsavar, K., Nasiri, N., Bahmani, A., Ganjali, M.R. and Saboury, A.A. 2022. A novel DNA/hemin complex with enzyme-like activity selected from a hairpin DNAs library at zero H2O2 Molecular Catalysis, 519, 112156.
  114. Shokri, E., Hosseini, M., Sadeghan, A.A., Bahmani, A., Nasiri, N. and Hosseinkhani, S. 2020. Virus-directed synthesis of emitting copper nanoclusters as an approach to simple tracer preparation for the detection of Citrus Tristeza Virus through the fluorescence anisotropy immunoassay. Sensors and Actuators B: Chemical, 321, 128634.
  115. Shokri, E., Hosseini, M., Davari, M.D., Ganjali, M.R., Peppelenbosch, M.P. and Rezaee, F. 2017. Disulfide-induced self-assembled targets: a novel strategy for the label free colorimetric detection of DNAs/RNAs via unmodified gold nanoparticles. Scientific reports, 7(1), 45837.
  116. Shokri, E., Hosseini, M., Faridbod, F. and Rahaie, M. 2016. Rapid pre-symptomatic recognition of tristeza viral RNA by a novel fluorescent self-dimerized DNA–silver nanocluster probe. RSC advances 6(101): 99437-99443.
  117. Strawn, L.K., Gröhn, Y.T., Warchocki, S., Worobo, R.W., Bihn, E.A. and Wiedmann, M. 2013. Risk factors associated with Salmonella and Listeria monocytogenes contamination of produce fields. Applied and environmental microbiology 79(24): 7618-7627.
  118. Su, H., Ma, Q., Shang, K., Liu, T., Yin, H. and Ai, S. 2012. Gold nanoparticles as colorimetric sensor: A case study on coli O157: H7 as a model for Gram-negative bacteria. Sensors and Actuators B: Chemical, 161(1): 298-303.
  119. Tack, D.M., Marder, E.P., Griffin, P.M., Cieslak, P.R., Dunn, J., Hurd, S., Scallan, E., Lathrop, S., Muse, A., Ryan, P. and Smith, K. 2019. Preliminary incidence and trends of infections with pathogens transmitted commonly through food—Foodborne Diseases Active Surveillance Network, 10 US sites, 2015–2018. American Journal of Transplantation 19(6): 1859-1863.
  120. Tan, L., Chen, Z., Zhang, C., Wei, X., Lou, T. and Zhao, Y. 2017. Colorimetric detection of Hg2+ based on the growth of aptamer‐coated AuNPs: the effect of prolonging aptamer strands. Small, 13(14), 1603370.
  121. Teklemariam, A.D., Al-Hindi, R.R., Albiheyri, R.S., Alharbi, M.G., Alghamdi, M.A., Filimban, A.A., Al Mutiri, A.S., Al-Alyani, A.M., Alseghayer, M.S., Almaneea, A.M. and Albar, A.H. 2023. Human Salmonellosis: A Continuous Global Threat in the Farm-to-Fork Food Safety Continuum. Foods, 12(9),1756.
  122. Van Elsas, J.D., Chiurazzi, M., Mallon, C.A., Elhottovā, D., Krištůfek, V. and Salles, J.F. 2012. Microbial diversity determines the invasion of soil by a bacterial pathogen. Proceedings of the National Academy of Sciences 109(4): 1159-1164.
  123. Villanueva, J.A., Crooks, A.L., Nagy, T.A., Quintana, J.L., Dalebroux, Z.D. and Detweiler, C.S. 2022. Salmonella enterica Infections Are Disrupted by Two Small Molecules That Accumulate within Phagosomes and Differentially Damage Bacterial Inner Membranes. Mbio, 13(5),01790-22.
  124. Wang, M., Zhang, Y., Tian, F., Liu, X., Du, S. and Ren, G., 2021. Overview of rapid detection methods for Salmonella in foods: Progress and challenges. Foods, 10(10), p.2402.
  125. Wattiau, P., Boland, C. and Bertrand, S. 2011. Methodologies for Salmonella enterica enterica subtyping: gold standards and alternatives. Applied and environmental microbiology 77(22): 7877-7885.
  126. Woldetsadik, D., Drechsel, P., Keraita, B., Itanna, F. and Gebrekidan, H. Heavy metal accumulation and health risk assessment in wastewater-irrigated urban vegetable farming sites of Addis Ababa, Ethiopia. International Journal of Food Contamination  4: 1-13.
  127. Wu, W.H., Li, M., Wang, Y., Ouyang, H.X., Wang, L., Li, C.X., Cao, Y.C., Meng, Q.H. and Lu, J.X. 2012. Aptasensors for rapid detection of Escherichia coli O157: H7 and Salmonella typhimurium. Nanoscale research letters 7: 1-7.
  128. Wu, Y., Wu, M., Liu, C., Tian, Y., Fang, S., Yang, H., Li, B. and Liu, Q., 2021. Colloidal gold immunochromatographic test strips for broad-spectrum detection of Food Control, 126, p.108052.
  129. Xu, Y., Wang, H., Luan, C., Liu, Y., Chen, B. and Zhao, Y. 2018. Aptamer-based hydrogel barcodes for the capture and detection of multiple types of pathogenic bacteria. Biosensors and Bioelectronics 100: 404-410.
  130. Yaron, S. and Römling, U. 2014. Biofilm formation by enteric pathogens and its role in plant colonization and persistence. Microbial biotechnology 7(6): 496-516.
  131. Yüce, M., Kurt, H., Hussain, B., Ow‐Yang, C.W. and Budak, H. 2018. Exploiting Stokes and anti‐Stokes type emission profiles of aptamer‐functionalized luminescent nanoprobes for multiplex sensing applications. ChemistrySelect 3(21): 5814-5823.
  132. Zarkani, A.A. and Schikora, A., 2021. Mechanisms adopted by Salmonella to colonize plant hosts. Food Microbiology, 99, p.103833.
  133. Zarkani, A.A., López-Pagán, N., Grimm, M., Sánchez-Romero, M.A., Ruiz-Albert, J., Beuzón, C.R. and Schikora, A., 2020. Salmonella heterogeneously expresses flagellin during colonization of plants. Microorganisms, 8(6), p. 815.
  134. Zarkani, A.A., Schierstaedt, J., Becker, M., Krumwiede, J., Grimm, M., Grosch, R., Jechalke, S. and Schikora, A. 2019. Salmonella adapts to plants and their environment during colonization of tomatoes. FEMS Microbiology Ecology, 95(11), 152.
  135. Zhang, D., Liu, Y., Ding, J., Hayat, K., Zhan, X., Zhou, P. and Zhang, D. Label-free colorimetric assay for arsenic (III) determination based on a truncated short ssDNA and gold nanoparticles. Microchimica Acta 188: 1-9.
  136. Zhang, Y., Nandakumar, R., Bartelt‐Hunt, S.L., Snow, D.D., Hodges, L. and Li, X. 2014. Quantitative proteomic analysis of the Salmonella‐lettuce Microbial biotechnology 7(6): 630-637.