Effect of Some Biofertilizers on the Physiological Characteristics of Wheat Flag Leaves and Rhizosphere Enzyme Activities at Different Irrigation Levels

Document Type : Research Paper

Authors

1 Department of Soil Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran

2 Department of Soil Biology and Biotechnology, Soil and Water Research Institute, AREEO, Karaj

3 Department of Soil and Water, Khorasan Razavi Agricultural and Natural Resources Research and Education Center, AREEO, Mashhad, Iran

Abstract

Background and objectives: Drought stress is a major limiting factor in global agricultural productivity, significantly affecting plant growth and yield by altering the plant’s morphological, physiological, and biochemical characteristics. These changes, including reductions in chlorophyll content, leaf water status, metabolite content, compromise plant development and crop output. One promising approach to mitigating the detrimental effects of drought stress is the use of biofertilizers, particularly arbuscular mycorrhizal (AM) fungi and plant growth-promoting rhizobacteria (PGPR). AM fungi establish symbiotic relationships with plants, improving water uptake and nutrient absorption, while PGPR enhance plant growth through various mechanisms, including the production of enzymes and stress-relieving compounds. Although numerous studies have demonstrated the efficacy of biofertilizers in improving plant resilience to drought, there is a significant knowledge gap regarding the comparative effectiveness of different types of biofertilizers. Specifically, it remains unclear whether fungal-based or bacterial-based biofertilizers are more effective, and whether liquid or powder formulations provide superior benefits. Moreover, there is limited understanding of the role of soil microbial processes, such as enzyme activities in the rhizosphere, in the plant’s adaptive response to drought conditions. This study aims to fill these gaps by investigating the effects of different biofertilizer types and formulations on drought tolerance in wheat, focusing on key physiological, biochemical, and microbial indicators.

Materials and methods: For these purposes, a split-plot experiment was conducted based on a randomized complete block design with three replications under field conditions. The main plots consisted of three irrigation treatments: 100%, 85%, and 65% of the plant's water requirement, representing full irrigation, mild water stress, and severe water stress, respectively. The subplots included different biofertilizer treatments: no biofertilizer (F1), Pseudomonas fluorescens producing ACC-deaminase (F2), P. fluorescens without ACC-deaminase production (F3), AM fungus in liquid form (F4), and AM fungus in powder form (F5). Samples of flag leaves, roots, and rhizospheric soil were collected at the spike emergence stage. Several parameters were measured, including chlorophyll, carotenoid, proline, relative water content (RWC), membrane stability index (MSI) in the flag leaves, root colonization percentage, and rhizosphere enzyme activities such as acid phosphatase, alkaline phosphatase, and β-glucosidase. These indicators were chosen to evaluate both the direct effects of biofertilizers on plant drought tolerance and the associated microbial processes in the soil.

Results: The results indicated that among the bacterial biofertilizers, only the application of F2 under severe water stress led to a 5% decrease in proline, a 6.5% increase in chlorophyll a, a 6% increase in total chlorophyll, a 16% rise in carotenoids, as well as a 10% increase in β-glucosidase activity and a 13% increase in acid phosphatase activity compared to the treatment without biofertilizer. The powder form of AM fungus (F5) proved to be the most effective in colonizing the roots of wheat. Specifically, root colonization with F5 was 13%, 19%, and 8% higher at irrigation levels of 65%, 85%, and 100% of the plant's water requirement, respectively, compared to the liquid form of AM fungus (F4). Overall, fungal biofertilizers outperformed bacterial biofertilizers in enhancing the physiological characteristics of wheat. For instance, under severe water stress, the F5 and F4 treatments increased RWC by 8.5% and 6%, MSI by 20% and 14%, chlorophyll a by 1% and 14%, and total chlorophyll by 12% and 10% compared to the treatment without biofertilizer, which were significantly higher than the bacterial biofertilizers. Among the fungal biofertilizer formulations, the powder form of AM fungus was more efficient than the liquid form in increasing wheat's drought tolerance. The powder form also improved β-glucosidase activity under both severe and mild water stress conditions and increased the activity of all the investigated enzymes under full irrigation. A stepwise linear regression model revealed that that among the biochemical and physiological characteristics of the flag leaf of the wheat, the amount of proline and carotenoid are the most important key variables affecting the β-glucosidase activity with relative importance index of 25.8% and 18.9%, respectively. Also, the amount of total chlorophyll and chlorophyll a had the greatest effect on the amount of alkaline and acid phosphatase activities.

Conclusion: The findings of this study underscore the superior effectiveness of fungal biofertilizers, particularly in powder form, in enhancing drought tolerance in wheat. The powder form of AM fungi was more efficient than the liquid form in promoting root colonization and increasing enzyme activity in the rhizosphere, leading to improved physiological and biochemical traits in the wheat plants. This formulation likely contains a greater diversity of AM fungal species, which may contribute to its enhanced performance. The positive feedback loop observed between rhizospheric enzyme activities and plant physiological traits suggests that biofertilizers, particularly AM fungi, can play a crucial role in improving the drought resilience of crops in water-limited environments.

Keywords


  1. بشارتی، ح. 1401. باکتری‌های محرک رشد گیاه و کاربرد آنها در کشاورزی. زیست شناسی خاک، 10(2): 135-162.
  2. پوربابایی، الف.ع.، بهمنی، الف.، علیخانی، ح.، امامی، س. 1400. بررسی تأثیر باکتری‌های مولد آنزیم ACCدآمیناز و شوری خاک بر شاخص‌های رشدی و تغذیه‎ای گندم. زیست شناسی خاک، 9(1): 1-14.
  3. صالحی، م.، فرامرزی، ع.، فربودی، م.، محبعلی پور، ن.، اجلی، ج. 1400. مطالعه اثر Funneliformis mosseae و Pseudomonas fluorescens بر برخی از مولفه‌های رشدی و تغذیه‌ای گیاه ماش (Vigna radiata Wilczek) تحت تنش خشکی در شرایط گلخانه‌ای. زیست شناسی خاک، 9(1): 73-84.
  4. ناصری، ر.، براری، م.، زارع، م.ج.، خاوازی، ک.، و طهماسبی، ز. 1396. اثر باکتری‌های افزاینده رشد و قارچ میکوریزا بر رشد و عمکرد گندم در شرایط دیم. زیست شناسی خاک، 5(1): 49-66.
  5. نمروری، م.، فتحی، ق.الف.، بخشنده، ع.الف.، قرینه، م.ح.، و جعفری، س. 1392. تأثیر تنش خشکی و کودهای زیستی و شیمیایی روی میزان کلروفیل برگ پرچم گندم و همبستگی آن با عملکرد دانه. نشریه تولید و فرآوری محصولات زراعی و باغی، ۳ (۱۰) :۷۹-۸۷.
  6. محمدی اشکفتکی، م.، رجالی، ف. 1400. بررسی تأثیر همزیستی میکوریزی بر خصوصیات رشدی و کلنیزاسیون پایه‌های متداول بادام در شرایط مطلوب و تنش کم آبی. زیست شناسی خاک، 9(1): 15-28.
  7. مجیدی، ع.، رجالی، ف. 1402. تأثیر همزیستی میکوریزی و ‌برگ پاشی گلایسین‌ بتائین بر برخی صفات زراعی گندم دیم در خاک‌های آهکی. تحقیقات آب و خاک ایران، 54، 281–
  8. یقینی، ف.، سیدشریفی، ر.، و نریمانی، ح. 1399. تاثیر کاربرد آبیاری تکمیلی و کودهای زیستی بر عملکرد، محتوای کلروفیل، سرعت و طول دوره پر شدن دانه گندم دیم. پژوهشهای زراعی ایران، 18(1)، 101-109.
  9. Abobatta, W.F., 2019. Drought adaptive mechanisms of plants—A review. Advances in Agriculture and Environmental Science 2, 62–65.
  10. Alwhibi, M.S., Khalil, M.I.M., Ibrahim, M.M., El-Gaaly, G.A., Sultan, A.S., 2017. Potential Antitumor Activity and Apoptosis Induction of Glossostemon bruguieri Root Extract against Hepatocellular Carcinoma Cells. Evidence-Based Complementary and Alternative Medicine : ECAM 2017, 7218562. doi:10.1155/2017/7218562
  11. Asha, A.D., Nivetha, N., Krishna, G.K., Thakur, J.K., Rathi, M.S., Manjunatha, B.S., Chinnusamy, V., Paul, S., 2021. Amelioration of short-term drought stress during different growth stages in Brassica juncea by rhizobacteria mediated maintenance of ROS homeostasis. Physiologia Plantarum 172, 1880–1893. doi:https://doi.org/10.1111/ppl.13399
  12. Augé, R.M., 2001. Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11, 3–42. doi:10.1007/s005720100097
  13. Bajji, M., Kinet, J.-M., Lutts, S., 2002. The use of the electrolyte leakage method for assessing cell membrane stability as a water stress tolerance test in durum wheat. Plant Growth Regulation 36, 61–70. doi:10.1023/A:1014732714549
  14. Balabandian, A., Ashouri, M., Doroudian, H.R., Sadeghi, S.M., Rezaei, M., 2021. Effect of irrigation interval and biological and nitrogen fertilizers on grain yield and water use efficiency of rice cultivars. Brazilian Journal of Botany 44, 653–661. doi:10.1007/s40415-021-00744-6
  15. Bangar, P., Chaudhury, A., Tiwari, B., Kumar, S., Kumari, R., Bhat, K.V., 2019. Morphophysiological and biochemical response of mungbean [Vigna radiata (L.) Wilczek] varieties at different developmental stages under drought stress. Turkish Journal of Biology 43, 58–69.
  16. Basiru, S., Mwanza, H.P., Hijri, M., 2021. Analysis of Arbuscular Mycorrhizal Fungal Inoculant Benchmarks. Microorganisms. doi:10.3390/microorganisms9010081
  17. Bates, L.S., Waldren, R.P., Teare, I.D., 1973. Rapid determination of free proline for water-stress studies. Plant and Soil 39, 205–207. doi:10.1007/BF00018060
  18. Beltrano, J., Ronco, M.G., 2008. Improved tolerance of wheat plants (Triticum aestivum L.) to drought stress and rewatering by the arbuscular mycorrhizal fungus Glomus claroideum: Effect on growth and cell membrane stability. Brazilian Journal of Plant Physiology 20, 29–37. doi:10.1590/S1677-04202008000100004
  19. Bogati, K., Walczak, M., 2022. The Impact of Drought Stress on Soil Microbial Community, Enzyme Activities and Plants. Agronomy 12, 189. doi:10.3390/agronomy12010189
  20. Calvet, C., Camprubi, A., Pérez-Hernández, A., Lovato, P.E., 2013. Plant Growth Stimulation and Root Colonization Potential of In Vivo versus In Vitro Arbuscular Mycorrhizal Inocula. HortScience Horts 48, 897–901. doi:10.21273/HORTSCI.48.7.897
  21. Chaves, M.M., Maroco, J.P., Pereira, J.S., 2003. Understanding plant responses to drought - from genes to the whole plant. Functional Plant Biology : FPB 30, 239–264. doi:10.1071/FP02076
  22. Chen, S., Zhao, H., Zou, C., Li, Y., Chen, Y., Wang, Z., Jiang, Y., Liu, A., Zhao, P., Wang, M., Ahammed, G.J., 2017. Combined Inoculation with Multiple Arbuscular Mycorrhizal Fungi Improves Growth, Nutrient Uptake and Photosynthesis in Cucumber Seedlings . Frontiers in Microbiology  .
  23. Crossay, T., Majorel, C., Redecker, D., Gensous, S., Medevielle, V., Durrieu, G., Cavaloc, Y., Amir, H., 2019. Is a mixture of arbuscular mycorrhizal fungi better for plant growth than single-species inoculants? Mycorrhiza 29, 325–339. doi:10.1007/s00572-019-00898-y
  24. Dastborhan, S., Ghassemi-Golezani, K., 2015. Influence of seed priming and water stress on selected physiological traits of borage. Folia Horticulturae 27, 151–159. doi:10.1515/fhort-2015-0025
  25. Daunoras, J., Kačergius, A., Gudiukaitė, R., 2024. Role of Soil Microbiota Enzymes in Soil Health and Activity Changes Depending on Climate Change and the Type of Soil Ecosystem. Biology. doi:10.3390/biology13020085
  26. Dobbelaere, S., Okon, Y., 2007. The Plant Growth-Promoting Effect and Plant Responses BT - Associative and Endophytic Nitrogen-fixing Bacteria and Cyanobacterial Associations, in: Elmerich, C., Newton, W.E. (Eds.), . Springer Netherlands, Dordrecht, pp. 145–170. doi:10.1007/1-4020-3546-2_7
  27. Dong, L., Li, Y., Xu, J., Yang, J., Wei, G., Shen, L., Ding, W., Chen, S., 2019. Biofertilizers regulate the soil microbial community and enhance Panax ginseng yields. Chinese Medicine 1–14. doi:10.1186/s13020-019-0241-1
  28. Duan, H.-X., Luo, C.-L., Zhou, R., Zhao, L., Zhu, S.-G., Chen, Y., Zhu, Y., Xiong, Y.-C., 2024. AM fungus promotes wheat grain filling via improving rhizospheric water & nutrient availability under drought and low density. Applied Soil Ecology 193, 105159. doi:https://doi.org/10.1016/j.apsoil.2023.105159
  29. Easwar Rao, D., Chaitanya, K. V, 2016. Photosynthesis and antioxidative defense mechanisms in deciphering drought stress tolerance of crop plants. Biologia Plantarum 60, 201–218. doi:10.1007/s10535-016-0584-8
  30. Egamberdieva, D., Wirth, S., Abd_Allah, E.F., 2018. Plant Hormones as Key Regulators in Plant-Microbe Interactions Under Salt Stress BT - Plant Microbiome: Stress Response, in: Egamberdieva, D., Ahmad, P. (Eds.), . Springer Singapore, Singapore, pp. 165–182. doi:10.1007/978-981-10-5514-0_7
  31. Eivazi, F., Tabatabai, M.A., 1988. Glucosidases and galactosidases in soils. Soil Biology and Biochemistry 20, 601–606. doi:https://doi.org/10.1016/0038-0717(88)90141-1
  32. Eivazi, F., Tabatabai, M.A., 1977. Phosphatases in soils. Soil Biology and Biochemistry 9, 167–172. doi:10.1016/0038-0717(77)90070-0
  33. El-Tarabily, K.A., AlKhajeh, A.S., Ayyash, M.M., Alnuaimi, L.H., Sham, A., ElBaghdady, K.Z., Tariq, S., AbuQamar, S.F., 2019. Growth Promotion of Salicornia bigelovii by Micromonospora chalcea UAE1, an Endophytic 1-Aminocyclopropane-1-Carboxylic Acid Deaminase-Producing Actinobacterial Isolate. Frontiers in Microbiology 10. doi:10.3389/fmicb.2019.01694
  34. El-Tarabily, K.A., Youssef, T., 2011. Improved growth performance of the mangrove Avicennia marina seedlings using a 1-aminocyclopropane-1-carboxylic acid deaminase-producing isolate of Pseudoalteromonas maricaloris. Plant Growth Regulation 65, 473–483. doi:10.1007/s10725-011-9618-6
  35. Eliaspour, S., Seyed Sharifi, R., Shirkhani, A., Farzaneh, S., 2020. Effects of biofertilizers and iron nano-oxide on maize yield and physiological properties under optimal irrigation and drought stress conditions. Food Science and Nutrition 8, 5985–5998. doi:10.1002/fsn3.1884
  36. Fernández-Lizarazo, J.C., Moreno-Fonseca, L.P., 2016. Mechanisms for tolerance to water-deficit stress in plants inoculated with arbuscular mycorrhizal fungi. A review. Agronomía Colombiana 34, 179–189. doi:10.15446/agron.colomb.v34n2.55569
  37. Flexas, J., Bota, J., Loreto, F., Cornic, G., Sharkey, T.D., 2004. Diffusive and Metabolic Limitations to Photosynthesis under Drought and Salinity in C3 Plants. Plant Biology 6, 269–279. doi:https://doi.org/10.1055/s-2004-820867
  38. Gill, S.S., Tuteja, N., 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry 48, 909–930. doi:https://doi.org/10.1016/j.plaphy.2010.08.016
  39. Glick, B.R., 1995. The enhancement of plant growth by free-living bacteria. Canadian Journal of Microbiology 41, 109–117. doi:10.1139/m95-015
  40. Guyonnet, J.P., Cantarel, A.A.M., Simon, L., Haichar, F.E.Z., 2018. Root exudation rate as functional trait involved in plant nutrient-use strategy Ecology and Evolution 8, 8573–8581. doi:10.1002/ece3.4383
  41. Hashem, A., Abd_Allah, E.F., Alqarawi, A.A., Al Huqail, A.A., Egamberdieva, D., Wirth, S., 2016. Alleviation of cadmium stress in Solanum lycopersicum L. by arbuscular mycorrhizal fungi via induction of acquired systemic tolerance. Saudi Journal of Biological Sciences 23, 272–281. doi:https://doi.org/10.1016/j.sjbs.2015.11.002
  42. Hoang, D.T.T., Rashtbari, M., Anh, L.T., Wang, S., Tu, D.T., Hiep, N.V., Razavi, B.S., 2022. Mutualistic interaction between arbuscular mycorrhiza fungi and soybean roots enhances drought resistant through regulating glucose exudation and rhizosphere expansion. Soil Biology and Biochemistry 171, 108728. doi:10.1016/j.soilbio.2022.108728
  43. Holz, M., Zarebanadkouki, M., Kaestner, A., Kuzyakov, Y., Carminati, A., 2018. Rhizodeposition under drought is controlled by root growth rate and rhizosphere water content. Plant and Soil 423, 429–442. doi:10.1007/s11104-017-3522-4
  44. Hosseini, F., Mosaddeghi, M.R., Dexter, A.R., Sepehri, M., 2019. Effect of endophytic fungus Piriformospora indica and PEG-induced water stress on maximum root growth pressure and elongation rate of maize. Plant and Soil 435, 423–436. doi:10.1007/s11104-018-03909-7
  45. Hosseini, S.S., Lakzian, A., Razavi, B.S., 2022. Reduction in root active zones under drought stress controls spatial distribution and catalytic efficiency of enzyme activities in rhizosphere of wheat. Rhizosphere 23, 100561. doi:10.1016/j.rhisph.2022.100561
  46. Jalili, F., Khavazi, K., Pazira, E., Nejati, A., Rahmani, H.A., Sadaghiani, H.R., Miransari, M., 2009. Isolation and characterization of ACC deaminase-producing fluorescent pseudomonads, to alleviate salinity stress on canola (Brassica napus L.) growth. Journal of Plant Physiology 166, 667–674. doi:https://doi.org/10.1016/j.jplph.2008.08.004
  47. Javadi, A., Ghahremanzadeh, M., Sassi, M., Javanbakht, O., Hayati, B., 2024. Impact of Climate Variables Change on the Yield of Wheat and Rice Crops in Iran (Application of Stochastic Model Based on Monte Carlo Simulation). Computational Economics 63, 983–1000. doi:10.1007/s10614-023-10389-0
  48. Javan Gholiloo, M., Yarnia, M., Ghorttapeh, A.H., Farahvash, F., Daneshian, A.M., 2019. Evaluating effects of drought stress and bio-fertilizer on quantitative and qualitative traits of valerian (valeriana officinalis l.). Journal of Plant Nutrition 42, 1417–1429. doi:10.1080/01904167.2019.1628972
  49. Khan, H. ur R., Link, W., Hocking, T.J., Stoddard, F.L., 2007. Evaluation of physiological traits for improving drought tolerance in faba bean (Vicia faba L.). Plant and Soil 292, 205–217. doi:10.1007/s11104-007-9217-5
  50. Khan, Y., Shah, S., Tian, H., 2022. The Roles of Arbuscular Mycorrhizal Fungi in Influencing Plant Nutrients, Photosynthesis, and Metabolites of Cereal Crops—A Review. Agronomy. doi:10.3390/agronomy12092191
  51. Kormanik, P.P., McGraw, A.-C., 1982. Quantification of vesicular-arbuscular mycorrhizae in plant roots., in: Schenck, N.C. (Ed.), Methods and Principles of Mycorrhizal Research. American Phytopathological Society, pp. 37–47.
  52. Lazarovits, G., Nowak, J., 1997. Rhizobacteria for Improvement of Plant Growth and. HortScience 32.
  53. Lee, S.-Y., Lee, S.H., Jang, J.K., Cho, K.-S., 2011. Comparison of Methanotrophic Community and Methane Oxidation between Rhizospheric and Non-Rhizospheric Soils. Geomicrobiology Journal 28, 676–685. doi:10.1080/01490451.2010.511984
  54. Li, J., Zhang, T., Sun, W., 2019. Arbuscular mycorrhizal fungi alleviate drought stress in C3 (Leymus chinensis) and C4 (Hemarthria altissima) grasses via altering antioxidant enzyme activities and photosynthesis. Frontiers in Plant Science 10, 450785.
  55. Liang, X., Zhang, L., Natarajan, S.K., Becker, D.F., 2013. Proline mechanisms of stress survival. Antioxidants & Redox Signaling 19, 998–1011. doi:10.1089/ars.2012.5074
  56. Lichtenthaler, H.K., Buschmann, C., 2001. Chlorophylls and Carotenoids: Measurement and Characterization by UV‐VIS Spectroscopy. Current Protocols in Food Analytical Chemistry 1, F4.3.1-F4.3.8. doi:10.1002/0471142913.faf0403s01
  57. Liu, F., Ma, H., Peng, L., Du, Z., Ma, B., Liu, X., 2019. Effect of the inoculation of plant growth-promoting rhizobacteria on the photosynthetic characteristics of Sambucus williamsii Hance container seedlings under drought stress. AMB Express 9, 169. doi:10.1186/s13568-019-0899-x
  58. Liu, S., He, F., Kuzyakov, Y., Xiao, H., Hoang, D.T.T., Pu, S., Razavi, B.S., 2022. Nutrients in the rhizosphere: A meta-analysis of content, availability, and influencing factors. Science of The Total Environment 826, 153908. doi:10.1016/j.scitotenv.2022.153908
  59. Mattoo, R., Umashankar, N., Raveendra, H.R., 2021. Contrasting rhizosphere microbial communities between fertilized and bio-inoculated millet. Rhizosphere 17, 100273. doi:https://doi.org/10.1016/j.rhisph.2020.100273
  60. Maurer, D., Kiese, R., Kreuzwieser, J., Rennenberg, H., 2018. Processes that determine the interplay of root exudation, methane emission and yield in rice agriculture. Plant Biology 20, 951–955. doi:https://doi.org/10.1111/plb.12880
  61. Micallef, S.A., Shiaris, M.P., Colón-Carmona, A., 2009. Influence of Arabidopsis thaliana accessions on rhizobacterial communities and natural variation in root exudates. Journal of Experimental Botany 60, 1729–1742. doi:10.1093/jxb/erp053
  62. Mohanta, T.K., Bashir, T., Hashem, A., Abd_Allah, E.F., 2017. Systems biology approach in plant abiotic stresses. Plant Physiology and Biochemistry 121, 58–73. doi:https://doi.org/10.1016/j.plaphy.2017.10.019
  63. Namarvari, M., Fathi, G., Bakhshandeh, A., Gharineh, M.H., Jafari, S., 2014. Effect of Drought Stress and Biological and Chemical Fertilizerson Wheat Flag Leaf Chlorophyll and Correlation with the Grain Yield. JCPP 3, 79–87.
  64. Naseri, R., Barary, M., Zarea, M.J., Khavazi, K., Tahmasebi, Z., 2017. Effect of plant growth promoting bacteria and Mycorrhizal fungi on growth and yield of wheat under dryland conditions. Journal of Sol Biology 5, 49–66. doi:10.22092/sbj.2017.113121
  65. Oguz, M.C., Aycan, M., Oguz, E., Poyraz, I., Yildiz, M., 2022. Drought Stress Tolerance in Plants: Interplay of Molecular, Biochemical and Physiological Responses in Important Development Stages. Physiologia. doi:10.3390/physiologia2040015
  66. Ortas, I., Ustuner, O., 2014. The effects of single species, dual species and indigenous mycorrhiza inoculation on citrus growth and nutrient uptake. European Journal of Soil Biology 63, 64–69. doi:https://doi.org/10.1016/j.ejsobi.2014.05.007
  67. Padmavathi, T.A. V, Rao, D.M., 2013. Differential accumulation of osmolytes in 4 cultivars of peanut (Arachis hypogaea L.) under drought stress. Journal of Crop Science and Biotechnology 16, 151–159. doi:10.1007/s12892-012-0102-2
  68. Parihar, M., Rakshit, A., Rana, K., Prasad Meena, R., Chandra Joshi, D., 2020. A consortium of arbuscular mycorrizal fungi improves nutrient uptake, biochemical response, nodulation and growth of the pea (Pisum sativum L.) under salt stress. Rhizosphere 15, 100235. doi:https://doi.org/10.1016/j.rhisph.2020.100235
  69. Pathan, S.I., Žifčáková, L., Ceccherini, M.T., Pantani, O.L., Větrovský, T., Baldrian, P., 2017. Seasonal variation and distribution of total and active microbial community of β-glucosidase encoding genes in coniferous forest soil. Soil Biology and Biochemistry 105, 71–80. doi:https://doi.org/10.1016/j.soilbio.2016.11.003
  70. Paul, S., Premi, O.P., Meena, S.L., Asha, A.D., Nivetha, N., Vikram, K.V., Lavanya, A.K., Rathi, M.S., Bandeppa, S., Manjunatha, B.S., 2022. PGPR improve physiological and yield attributes in mustard under different regimes of water supply. Archives of Agronomy and Soil Science. doi:10.1080/03650340.2022.2099540
  71. Pellegrino, E., Nuti, M., Ercoli, L., 2022. Multiple Arbuscular Mycorrhizal Fungal Consortia Enhance Yield and Fatty Acids of Medicago sativa: A Two-Year Field Study on Agronomic Traits and Tracing of Fungal Persistence . Frontiers in Plant Science  .
  72. Phillips, J.M., Hayman, D.S., 1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society 55, 158–161.
  73. Pons, C., Müller, C., 2022. Impacts of Drought Stress and Mycorrhizal Inoculation on the Performance of Two Spring Wheat Cultivars. Plants. doi:10.3390/plants11172187
  74. Qu, Q., Wang, Z., Gan, Q., Liu, R., Xu, H., 2023. Impact of drought on soil microbial biomass and extracellular enzyme activity 1–10. doi:10.3389/fpls.2023.1221288
  75. Rillig, M.C., Wright, S.F., Nichols, K.A., Schmidt, W.F., Torn, M.S., 2001. Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils. Plant and Soil 233, 167–177.
  76. Rocha, I., Duarte, I., Ma, Y., Souza-Alonso, P., Látr, A., Vosátka, M., Freitas, H., Oliveira, R.S., 2019a. Seed Coating with Arbuscular Mycorrhizal Fungi for Improved Field Production of Chickpea. Agronomy. doi:10.3390/agronomy9080471
  77. Rocha, I., Ma, Y., Souza-alonso, P., Vosátka, M., Freitas, H., Oliveira, R.S., 2019b. Seed Coating : A Tool for Delivering Beneficial Microbes to Agricultural Crops 10. doi:10.3389/fpls.2019.01357
  78. Rollins, J.A., Habte, E., Templer, S.E., Colby, T., Schmidt, J., von Korff, M., 2013. Leaf proteome alterations in the context of physiological and morphological responses to drought and heat stress in barley (Hordeum vulgare L.). Journal of Experimental Botany 64, 3201–3212. doi:10.1093/jxb/ert158
  79. Sainju, U.M., Liptzin, D., Dangi, S.M., 2022. Enzyme activities as soil health indicators in relation to soil characteristics and crop production. Agrosystems, Geosciences & Environment 5, e20297. doi:https://doi.org/10.1002/agg2.20297
  80. Sairam, R.K., 1994. Effect of moisture-stress on physiological activities of two contrasting wheat genotypes. Indian Journal of Experimental Biology 32, 594.
  81. Sharma, P., Jha, A.B., Dubey, R.S., Pessarakli, M., 2012. Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions. Journal of Botany 2012, 217037. doi:10.1155/2012/217037
  82. Shen, J., Yuan, L., Zhang, J., Li, H., Bai, Z., Chen, X., Zhang, W., Zhang, F., 2011. Phosphorus dynamics: from soil to plant. Plant Physiology 156, 997–1005.
  83. Shirmohammadi, E., Alikhani, H.A., Pourbabaei, A.A., Etesami, H., 2020. Improved Phosphorus (P) Uptake and Yield of Rainfed Wheat Fed with P Fertilizer by Drought-Tolerant Phosphate-Solubilizing Fluorescent Pseudomonads Strains: a Field Study in Drylands. Journal of Soil Science and Plant Nutrition 20, 2195–2211. doi:10.1007/s42729-020-00287-x
  84. Stark, J.M., Firestone, M.K., 1995. Mechanisms for soil moisture effects on activity of nitrifying bacteria. Applied and Environmental Microbiology 61, 218–221.
  85. Staszel, K., Lasota, J., Błońska, E., 2022. Effect of drought on root exudates from Quercus petraea and enzymatic activity of soil. Scientific Reports 12, 7635. doi:10.1038/s41598-022-11754-z
  86. Tabatabai, M.A., Bremner, J.M., 1969. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biology and Biochemistry 1, 301–307. doi:10.1016/0038-0717(69)90012-1
  87. Tang, H., Hassan, M.U., Feng, L., Nawaz, M., Shah, A.N., Qari, S.H., Liu, Y., Miao, J., 2022. The Critical Role of Arbuscular Mycorrhizal Fungi to Improve Drought Tolerance and Nitrogen Use Efficiency in Crops. Frontiers in Plant Science. doi:10.3389/fpls.2022.919166
  88. Turner, B.L., Driessen, J.P., Haygarth, P.M., Mckelvie, I.D., 2003. Potential contribution of lysed bacterial cells to phosphorus solubilisation in two rewetted Australian pasture soils. Soil Biology and Biochemistry 35, 187–189.
  89. Utobo, E.B., Tewari, L., 2015. Soil enzymes as bioindicators of soil ecosystem status. Applied Ecology and Environmental Research 13, 147–169.
  90. Vikram, K. V., Meena, S.L., Kumar, S., Ranjan, R., Nivetha, N., Paul, S., 2022. Influence of medium-term application of rhizobacteria on mustard yield and soil properties under different irrigation systems. Rhizosphere 24, 100608. doi:10.1016/j.rhisph.2022.100608
  91. Vivas, A., Marulanda, A., Ruiz-Lozano, J.M., Barea, J.M., Azcón, R., 2003. Influence of a Bacillus sp. on physiological activities of two arbuscular mycorrhizal fungi and on plant responses to PEG-induced drought stress. Mycorrhiza 13, 249–256. doi:10.1007/s00572-003-0223-z
  92. Wu, Q.-S., Srivastava, A.K., Zou, Y.-N., 2013. AMF-induced tolerance to drought stress in citrus: A review. Scientia Horticulturae 164, 77–87.
  93. Wu, Q.-S., Xia, R.-X., 2006. Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. Journal of Plant Physiology 163, 417–425. doi:https://doi.org/10.1016/j.jplph.2005.04.024
  94. Yaghoubi Khanghahi, M., AbdElgawad, H., Verbruggen, E., Korany, S.M., Alsherif, E.A., Beemster, G.T.S., Crecchio, C., 2022. Biofertilisation with a consortium of growth-promoting bacterial strains improves the nutritional status of wheat grain under control, drought, and salinity stress conditions. Physiologia Plantarum 174. doi:10.1111/ppl.13800
  95. Yagini, F., seyed sharifi, R., Khomari, S., Gasemi, M., 2020. Effect of supplementary irrigation and seed inoculation with bio fertilizers on yield and some physiological traits of rainfed wheat. Jispp 9, 147–163.
  96. Yang, X., Lu, M., Wang, Yufei, Wang, Yiran, Liu, Z., Chen, S., 2021. Response Mechanism of Plants to Drought Stress. Horticulturae 7, 50. doi:10.3390/horticulturae7030050
  97. Zabihi, H.R., Savaghebi, G.R., Khavazi, K., Ganjali, A., Miransari, M., 2011. Pseudomonas bacteria and phosphorous fertilization, affecting wheat (Triticumaestivum L.) yield and P uptake under greenhouse and field conditions. Acta Physiologiae Plantarum 33, 145–152. doi:10.1007/s11738-010-0531-9
  98. Zarei, T., Moradi, A., Kazemeini, S.A., Akhgar, A., Rahi, A.A., 2020. The role of ACC deaminase producing bacteria in improving sweet corn (Zea mays L. var saccharata) productivity under limited availability of irrigation water. Scientific Reports 10, 20361. doi:10.1038/s41598-020-77305-6