Evaluation of fluorescent pseudomonads isolated from Satureja rechingeri rhizosphere for the pyoverdine production and plant growth improvement under field conditions

Document Type : Research Paper

Authors

Research Institute of Forests and Rangelands, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran

Abstract

Abstract

Background and objectives: In recent years, the efficiency of native and compatible isolates of fluorescent pseudomonads in promoting the growth of various medicinal plants has been noticed. Fluorescent pseudomonads are a group of bacteria belonging to the genus Pseudomonas that produce a fluorescent green siderophore called pyoverdine under iron-deficiency conditions. These bacteria may also naturally enhance plant growth through other mechanisms such as fixing atmospheric nitrogen, synthesizing plant hormones, solubilizing phosphate, and suppressing plant pathogens and pests. Among the native medicinal plants of Iran, Reshingari savory (Satureja rechingeri Jamzad.) as a critically endangered species is of great importance. This species is utilized in traditional medicine as an antioxidant, digestion facilitator, anti-inflammatory, diuretic, sedative, and disinfectant, as well as in teas and spices. In this way, it is necessary to attempt to domesticate, promote cultivation, and enhance the growth of Reshingari savory using eco-friendly methods. The purpose of this study was to identify the most effective native and compatible isolates of fluorescent pseudomonads in terms of producing the pyoverdine siderophore. Additionally, the present study aimed to investigate the stimulating effects of these isolates on the growth parameters of Reschingari savory under field conditions.

Materials and methods: In this study, sampling was performed randomly from the depth of 25 cm of Satureja rechingeri roots and rhizospheric soil in the natural habitats of Mehran County in Ilam Province, Iran (n=3). Screening of the fluorescent pseudomonads’ isolates were conducted based on the production of fluorescent green pigment on King's B medium. Among 22 isolates of the fluorescent pseudomonads, isolates PF4, PF11, and PF19 showed the highest production of fluorescent green pigments around their colonies and introduced as the superior isolates. These isolates were identified based on several biochemical tests such as oxidase, arginine dihydrolase, KOH string test, oxidative-fermentative test, hypersensitive response (HR), levan, nitrate reduction, catalase, pectinase, lecithinase, gelatinase, starch hydrolysis, metabolism of carbohydrates (glucose, fructose, galactose, sucrose, trehalose, xylose, arabinose, sorbitol, adonitol, meso inositol, ethanol, and glycerol), etc. The pyoverdine amount produced by the superior isolates was evaluated using succinate medium and optical spectrometry method set at 400 nm based on a completely randomized experiment with three replicates. Reshingari savory seeds were also collected from its natural habitats located in Mehran County. Two months after planting the seeds in the seedling trays under greenhouse conditions, the plant’s 16-leaf seedlings were transferred to the research farm of the Research Institute of Forests and Rangelands which is located in Tehran province. Each two-year-old plant was treated with a suspension (107 CFU/ml) of the superior isolate by adding to the soil based on a randomized complete blocks design (P≤0.05). Seven months after applying the treatments, which coincided with the full flowering stage in the third year of planting, several vegetative traits such as the plant height, canopy diameter, the total number of branches per plant, the number of flowering branches, the shoot fresh and dry weights, the root fresh and dry weights, the root length and diameter were measured. Three replicates were randomly selected from three blocks for each treatment. The plots were 2 x 2 meters with a distance of two meters between them, and there was a 3-meter distance between the blocks.

Results: According to the results, isolates PF4, PF11, and PF19 belonged to biovars II, III, and V of Pseudomonas fluorescens, respectively. The highest concentration of siderophore pyoverdine (0.42 mg/ l) was significantly produced by isolate PF11 (P<0.05). The highest plant height (56.4 cm), canopy diameter (61.6 cm), total number of branches per plant (14.7), number of flowering branches (6.33), shoot fresh weight (161.67 g) and dry weight (114.3 g), root fresh weight (11.21 g) and dry weight (7.22 g) were observed in PF11 treatment and the highest root length (14.53 cm) and diameter (0.45 cm) were belonged to PF4 treatment.

Conclusion: According to the findings of the present study, the treatment of Reshingari plants with the growth-promoting rhizobacterium PF11 belonging to the group of fluorescent pseudomonads with the ability to produce the microbial siderophore pyoverdine improved the plant growth parameters under field conditions. It was also found that the efficiency of the bacterial isolates belonging to the P. fluorescens species can be significantly different from each other in terms of influencing the plant growth parameters. Therefore, it is recommended to apply the native and compatible isolate PF11 as an alternative to the use of chemical fertilizers in the cultivation of Reshingari savory.

Keywords


  1. آقاعلیخانی، م.، ایرانپور، الف. و نقدی بادی، ح. 1392. تغییرات عملکرد زراعی و فیتوشیمیایی سرخارگل (Echinacea purpurea (L.) Moench)  تحت تأثیر اوره و کود زیستی. فصلنامه گیاهان دارویی 12 (2): 121-136.
  2. ثقفی، ک.، احمدی، ج.، اصغرزاده، الف.، رکنی زاده، ح. و حسینی مزینانی، س.م. 1398. جداسازی، شناسایی و بررسی ویژگی‌های محرک رشدی سودوموناس‌های فلورسنت از ریزوسفر درختان زیتون در خاک‌های شور دوفصلنامه زیست شناسی خاک 7 (1): 13-27.
  3. داداش پو، ت.، سلطانی طولارود، ع.الف.، قویدل، الف. و عباس‌زاده دهجی، پ. 1399. رزیابی صفات محرک رشد گیاهی باکتری‌های سودوموناس فلورسنت جداسازی شده از ورمی‌کمپوست. دوفصلنامه زیست شناسی خاک 8 (2): 165-176.
  4. سماوات، س. 1388. بررسی برهمکنش جدایه هایی از جنس Rhizobium و Pseudomonas در کنترل مرگ گیاهچه لوبیا سبز ناشی از Rhizoctonia solani. پایان نامه کارشناسی ارشد. پردیس کشاورزی و منابع طبیعی دانشگاه تهران 109 صفحه.
  5. شریفی، ر. 1386. بررسی نقش سیدروفور سودوموناس‌های فلورسنت در کنترل Rhizoctonia solani روی لوبیا و تأثیر برخی شرایط محیطی روی آن. پایان نامه کارشناسی ارشد در رشته بیماری شناسی گیاهی. گروه گیاهپزشکی. دانشگاه تهران. 89 صفحه.
  6. محبی، ج.، جم‌زاد، ز. و بخشی‌خانیکی، غ.ر. 1395. جایگاه حفاظتی شش گونه انحصاری مرزه در ایران. نشریه طبیعت ایران 1 (1): 74-79.
  7. نصیرزاده، الف.، عباس‌زاده دهجی، پ.،, حمیدپور، م.، اخگر.، ع. و کریمان، خلیل. 1402. تأثیر کابرد باکتری‌های حل‌کننده ترکیبات نامحلول روی و پودر لاستیک بر رشد و محتوای روی و آهن در گیاه ذرت دوفصلنامه زیست شناسی خاک. 11 (1): 63-83.
  8. ویسانی، و.، رحیم‌زاده، س. و سهرابی، ی. 1391. تأثیر کودهای بیولوژیک بر صفات مورفولوژیک، فیزیولوژیک و میزان اسانس گیاه دارویی ریحان(Ocimum basilicum) . تحقیقات گیاهان دارویی و معطر ایران 28 (1): 73-87
  9. Afzalifar, M., Hadian, J., Mirjalili, M.H. and Enayati Shariatpanahi, M. 2019. Study of androgenesis of two medicinal plants Satureja khuzistanica Jamzad and rechingeri Jamzad. Cellular and Molecular Research (Iranian Journal of Biology) 31 (4): 458-470.
  10. Amiri, H. and Ghasemi Ramadanabad. Z. 2018. The effects of salinity on chemical composition of essential oil of Satureja rechingeri. Journal of Plant Research (Iranian Journal of Biology) 31(2): 248-257.
  11. Ayer, S.H., Rupp P. and Johnson, W.T. 1919. A study of alkali-forming bacteria in milk. U.S. Department of Agriculture, Bullock.
  12. Bashan, Y. 1998. Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnology Advances 16(4): 729-770.
  13. Bashan, Y. and de-Bashan, L.E. 2005. Fresh-weight measurements of roots provide inaccurate estimates of the effects of plant growth-promoting bacteria on root growth: A critical examination. Soil Biology & Biochemistry. Soil Biology and Biochemistry 37 (10): 1795-1804 10.1016/j.soilbio.2005.02.013.
  14. Bossis, E., Lemanceau, P., Latour, X. and Gardan, L. 2000. The taxonomy of Pseudomonas fluorescens and Pseudomonas putida: current status and need for revision. Agronomie 20: 51-63.
  15. Castaneda, G.C., Mounoz, T.J.J. and Videa, J.R.P. 2005. A spectrophotometric method to determine the siderophore production by strains of fluorescent Pseudomonas in the presence of copper and iron. Microchemical Journal 81: 35-40.
  16. Fatma, E.M., El-Zamik, I., Tomader, T., El-Hadidy, H.I., Abd El-Fattah, L. and Seham Salem, H. 2006. Efficiency of biofertilizers, organic and in organic amendments application on growth and essential oil of marjoram (Majorana hortensis) plants grown in sandy and calcareous. Zagazig University and Soil Fertility and Microbiology Department, Desert Research Center, Cairo, Egypt.
  17. Graham, D. C. and Hodgkiss, W. 1967. Identification of gram negative, yellow pigmented, fermentative bacteria isolated from plants and animals. Journal of Applied Bacteriology 30: 175-189.
  18. Hadian, J., Akramian, M., Heydari, H., Mumivand, H. and Asghari, B. 2012. Composition and in vitro antibacterial activity of essential oils from four Satureja species growing in Iran. Natural Product Research 26(2): 98-108.
  19. Hider, R.C. and Kong, X. 2010. Chemistry and biology of siderophores. Natural Product Reports 27: 637-657.
  20. Hugh, R. and Leifson, E. 1953. Taxonomic significance of versus oxidative metabolism of carbohydrates by various gram-negative bacteria. Journal of Bacteriology 66: 24-26.
  21. Jamzad, Z. 2010. A new species of Satureja (Lamiaceae) from Iran. The Iranian Journal of Botany 16 (2): 213-217.
  22. Khalediyan, N., Weisany, W. and Schenk, P.M. 2021. Arbuscular mycorrhizae and rhizobacteria improve growth, nutritional status and essential oil production in Ocimum basilicum and Satureja hortensis Industrial Crops and Products. https://doi.org/10.1016/j.indcrop.2020.113163
  23. Klement, Z., Farkas G.L. and Lovrekovich, H. 1964. Hypersensitivity reaction induced by phytopathogenic bacteria in the tobacco leaf. Phytopathology 54: 474-477.
  24. Kovacs, N. 1956. Identification of Pseudomonas pyocyanean by the oxidase reaction. Nature 178: 703.
  25. Lelliot, R.A. and Dickey, R.S. 1984. Genus VII Erwinia, In: Krieg, eds. N. R., Halt, J. G. Bergey's Manual of Systematic Bacteriology, Williams and Wilkins Co., The Baltimore Vol, 1, P. 469-476.
  26. Mac Faddin, J.F. 1980. Biochemical test for identification of medical bacteria. Williams and Wilkins, Baltimore.
  27. Palleroni, N.J. 1993. Pseudomonas Antonie van Leeuwenhoek 64: 231-251.
  28. Rai, A., Singh, V.K., Sharma, N.K., Singh, J.S., Singh, V.K., Dwivedi, B.S. and Rai, P.K. 2023. Effect of fluorescent Pseudomonas on plant growth promotion of Aloe vera. Journal of Plant Nutrition. https://doi.org/10.1080/01904167.2023.2294936
  29. Rasouli Sedghiani, M.H., Khavazi, K., Rahimian, H., Malakouti, M.J. and Asadi Rahmani, H. 2006. An evaluation of the potentials of indigenous fluorescent Pseudomonades of wheat rhizosphere for producing siderophore. Iranian Journal of Soil and Water Sciences 20(1):133-143.
  30. Rout G.R. and Sahoo, S. 2015. Role of iron in plant growth and metabolism. Reviews in Agricultural Science 3: 1-24.
  31. Schaad, N.W., Jones, J.B. and Chun, W. 2001. Laboratory guide for identification of plant pathogenic bacteria. 3rd APS Press. St. Paul, Minnesota, USA. 373 p.
  32. Shahnazi, S., Khalighi-Sigaroodi, F., Ajani, Y., Yazdani, D., Taghizad–Farid, R., Ahvazi, M et al. 2008. The chemical composition and antimicrobial activity of essential oil of Satureja intermedia A. Mey. Journal of Medicinal Plants 7 (25): 85-92.
  33. Suslow, T.U., Schroth, M.N. and Isaka M. 1982. Application of rapid method for gram differentiation of plant pathogenic and saprophytic bacteria without staining. Phytopathology 72: 917-918.
  34. Thornley, M.J. 1960. The differentiation of Pseudomonas from other bacteria on the basis of arginine metabolism. Journal of Applied Bacteriology 23: 37-52.
  35. Vijay, K., Shibasini, M., Sivasakthivelan, P. and Kavitha, T. 2023. Microbial siderophores as molecular shuttles for metal cations: sources, sinks and application perspectives. Archives of Microbiology 205(9): 322. https://doi.org/10.1007/s00203-023-03644-3
  36. Walters, D.R. and Bingham, I.J. 2007. Influence of nutrition on disease development caused by fungal pathogens: implications for plant disease control. Annals of Applied Biology 151: 307-324.
  37.