The role of effective oil-eating bacteria in the remediation of oil-contaminated soils (Case study: Bacillus genus)

Document Type : review articles

Authors

1 Department of Soil Science Engineering, College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran.

2 Department of Environmental Engineering, Faculty of Environment, University of Tehran, Tehran, Iran.

3 University of Tehran

Abstract

Extended abstract

Background and objectives

Crude oil consists of aliphatic, aromatic, and heterocyclic compounds, all of which are toxic to life forms. Therefore, oil pollution is a significant environmental concern. Due to widespread use, accidental spills, transportation, and refining processes, crude oil contamination is relatively common worldwide. Methods for remediating oil-contaminated soils include biological, chemical, and physical approaches. While chemical and physical methods have many disadvantages, bioremediation is a promising and effective approach for treating oil-contaminated soils. Bioremediation is the natural ability of microorganisms and their enzyme systems to degrade, break down, and convert hydrocarbons into less toxic substances. This method is considered the least harmful and most cost-effective way to clean the environment. Different microbial genera are known to degrade hydrocarbons. Among these, Bacillus stands out as a Gram-positive, rod-shaped bacterium capable of producing spores in aerobic environments. Belonging to the class Bacilli and the family Bacillaceae, Bacillus can form endospores under stressful environmental conditions, allowing them to remain dormant for long periods. This unique characteristic makes Bacillus particularly advantageous for bioremediation in oil-contaminated environments. The current review article focuses on the recognition and potential of biodegradation of petroleum compounds by oil-eating bacteria, especially the genus Bacillus. It is hoped that this review will enhance our understanding of oil pollution's impact on biological communities and microbial remediation of oil-contaminated soils



Materials and Methods

All the articles used in this review were prepared from online sources (Google, Google scholar, SID, CAS, Science Direct, Wiley online Library, etc.), and from the publishers Elsevier, Wiley Online Library, Frontiers, Springer, ehp, Taylor and Francis Online, MDPI, ACS Publication, Nature, Civilica, etc.). This article is based on 169 JCR international journals and scientific journals. This review article briefly includes sections 1-The effect of crude oil on soil microorganisms, 2-Oil pollution in Iran, 3-The importance of bioremediation of petroleum compounds, 4-Mechanisms of remediation of oil-contaminated soils, 5-Aerobic and anaerobic degradation pathways of n-alkanes, 6-Researches conducted in the field of bioremediation of petroleum hydrocarbons in Iran, 7-Characteristics of Bacillus in oil degradation, and 8-Bioremediation of oil-contaminated soils in Iran with the approach of using Bacillus.



Results

Various bacterial genera, such as Achromobacter, Acinetobacter, Alcaligenes, Arthrobacter, Actinomycetes, Pseudomonas, Enterobacter, Micrococcus, Staphylococcus, Mycobacterium, Rhodococcus, Vibrio, Sphingomonas, Lactobacillus, and Serratia, are known to degrade hydrocarbons. These bacteria destroy hydrocarbons and purify the soil through the function of their enzyme system and secretion of various compounds such as biosurfactants through various pathways and mechanisms. There are two main mechanisms for the breakdown of hydrocarbons: aerobic and anaerobic pathways. In aerobic mechanisms, oxygen is used as the electron acceptor, while in anaerobic conditions, sulfate and nitrite receive the electrons and complete the process. Bacillus species are typically mesophilic, thriving at temperatures between 30-45°C. Some thermophilic species can grow at higher temperatures, up to 65°C. Spore formation in Bacillus involves asymmetric cell division, producing an endospore and a mother cell, which enables the bacterium to survive harsh conditions. Bacillus species can utilize hydrocarbons as carbon and energy sources, making them commonly found in oil-polluted soils. Several Bacillus species, including B. polymyxa, B. cereus, B. subtilis, B. badius, B. licheniformis, B. cibi, B. megaterium, and B. stearothermophilus, have demonstrated the ability to degrade petroleum hydrocarbons. These bacteria can tolerate a wide range of environmental conditions, such as varying pH, temperature, and salt concentrations, which few organisms can endure. They are highly resistant to environmental stressors like nutrient scarcity, dryness, radiation, hydrogen peroxide, and chemical disinfectants. The production of endospores also provides a distinct advantage for hydrocarbon biodegradation. Furthermore, Bacillus species produce a variety of biosurfactants, particularly lipopeptides, which enhance the solubility and bioavailability of hydrocarbons, thereby increasing bioremediation efficiency. Since biosurfactants are biodegradable and have low environmental toxicity, producing these powerful, stable compounds using low-cost carbon sources could significantly advance bioremediation of oil-contaminated soils. Bacillus also produces key degradative enzymes, such as lipase, hydroxylase, dioxygenase, monooxygenase P450, and protease, which play crucial roles in breaking down petroleum compounds. It has been reported that species like B. subtilis, B. pumilus, B. licheniformis, and B. megaterium can degrade alkanes, BTEX, and PAHs by secreting these enzymes. The hydrocarbon groups in oil can combine with soil phosphorus, leading to phosphorus depletion. Since phosphorus limitation is a key constraint in bioremediation of oil-contaminated soils, phosphorus-solubilizing Bacillus species such as B. subtilis, B. cereus, B. thuringiensis, B. pumilus, and B. megaterium, which secrete organic acids like gluconic, lactic, acetic, succinic, and propionic acids, can alleviate this problem. Research conducted in Iran and the international scientific community shows that this bacterium is capable of degrading various oil compounds by up to 99% within 10 to 30 days in liquid media. Additionally, in soil, Bacillus can degrade petroleum hydrocarbons by 20% to 80% over a period of 15 to 180 days.



Conclusion

In conclusion, various bacterial genera, particularly Bacillus species, play a critical role in the degradation of hydrocarbons through aerobic and anaerobic pathways. Bacillus, known for its resilience to environmental stressors and ability to form endospores, is highly effective in bioremediation, especially in oil-contaminated soils. These bacteria produce essential enzymes and biosurfactants, such as surfactin, which significantly enhance the breakdown of petroleum hydrocarbons. Moreover, phosphorus-solubilizing Bacillus species help address nutrient limitations in contaminated environments, further boosting their potential in environmental clean-up. Their remarkable efficiency, with degradation rates of up to 80% in soil, highlights their importance in sustainable bioremediation efforts worldwide.

Keywords

Main Subjects


  1. ابراهیمی، م.، فلاح، ع.، ساریخانی, م. 1392. جداسازی و شناسایی برخی از باکتری‌های تجزیه‌کننده مواد نفتی از خاک‏های آلوده به مواد نفتی و بررسی توان رشد آن‌ها در حضور گازوئیل. دانش آب و خاک، 23(1): 109-121.
  2. بشارتی، ح. 1392. پالایش میکروبی خاک‌های آلوده به مواد نفتی و بررسی نقش رایزوسفر در کارایی ریز جانداران. پژوهش­های خاک، 28(3): 573-584.
  3. بیات، ز.، حسن ش. م.، عسکری، م. 1397. جداسازی و شناسایی باکتری‏‌های تجزیه‌کننده نفت خام از شکم‏ پا Haustrum scobina‏‏ جمع ‏آوری شده از خلیج فارس (ناحیه ساحلی بندرعباس)، زیست شناسی میکروبی، 17(5): 72-61.
  4. خلیلی مقدم، ب.، سرخه، ز.، اسداغی، ا.، معتمدی، ح. 1398. تجزیه زیستی نفت سفید توسط باکتری‌های بومی جداسازی شده از خاک مزارع سبزیجات آلوده به ترکیبات نفت سفید استان خوزستان،تحقیقات آب و خاک ایران، 50(7): 1757-1747.
  5. دوستکی، م.، ابراهیمی، س.، موحدی ن.س.، علمائی، م. 1392. بهینه‌سازی شرایط تجزیه زیستی هیدروکربن‌های نفتی به‌وسیله میکرواورگانیسم‌های بومی و غیربومی. مجله پژوهش‌های حفاظت آب و خاک، 20(4): 165-181.
  6. رسولی، ث.، کاشفی ا.، مرتضی، م. ر.، امتیازجو، م.، زعیم دار، م. 1399. شناسایی باکتری‌های بومی خاک‌های آلوده به ترکیبات نفتی در منطقه ویژه اقتصادی پتروشیمی ماهشهر. علوم و تکنولوژی محیط زیست، 22(3 (پیاپی 94)): 286-277.
  7. زینالی، ک.، شریعتی، ش.، پوربابائی، ا.، شرفا، م. 1403. کاربرد کنسرسیوم باکتریایی مولد بیوسورفکتانت و تجزیه کننده نفت در افزایش ضریب آبگذری خاک آلوده به TPH. تحقیقات آب و خاک ایران (چاپ آنلاین).
  8. ساریخانی، م.، افشارنیا، م.، زارعی، م. 1401. جداسازی باکتری‌های تجزیه‌کننده نفت از خاک‌های آلوده نفتی پالایشگاه و پتروشیمی تبریز و شناسایی باکتری‌های کارآمد. دانش آب و خاک، 32(4): 91-104.
  9. سلیمانی، س.، لکزیان، ا.، فتوت، ا.، رمضانپور، م. 1399. بررسی تولید بیوسورفاکتانت توسط کنسرسیوم باکتریایی جدا شده از خاک آلوده به مواد نفتی. زیست شناسی خاک، 8(1): 55-71.
  10. سیدعلیخانی، س.، شرفا، م.، اصغرزاده، ا. 1390. کارآیی باکتری‌های باسیلوس و سودوموناس در زیست پالایی یک خاک آلوده به هیدروکربن ها. دانش آب و خاک (دانش کشاورزی)، 21(3): 101-91.
  11. شهریاری، م.، ثواقبی فیروزآبادی، غ.، پوربابایی، ا. 1391. توانایی تجزیه زیستی فنانترن توسط سویه باکتریایی شور دوست جداسازی شده از خاک شور و سدیمی آلوده به پسماند نفت خام منطقه سراجه قم. تحقیقات آب و خاک ایران (علوم کشاورزی ایران): 43(4)، 325-333.
  12. شوندی، م.، زمانیان، ن.، حدادی، ا. مطالعه دینامیک گونه‌های باسیلوس طی حذف آلودگی‌های نفتی با روش PCR-DGGE. زیست شناسی میکروارگانیسم ها، 7(26): 63-51.
  13. صابری، ط.، حسن شاهیان، م. 1400. جداسازی و شناسایی باکتری‌‌های تجزیه‌کنندۀ نفت خام از مکان‌های آلوده به مواد نفتی در مسجدسلیمان. زیست شناسی میکروبی، 10(38): 1-15.
  14. فلاح نصرت آباد، ع.، شریعتی، ش. 1394. بررسی تاثیر باکتری‌های سودوموناس و باسیلوس در عملکرد گندم و جذب عناصر غذایی و مقایسه آن با کود شیمیایی و آلی. آب و خاک، 28(5): 986-976.
  15. فلاح، ع.، مومنی، س.، شریعتی، ش. 1393. تاثیر کود زیستی و نیتروژن بر عملکرد و اجزاء عملکرد گندم در شرایط گلخانه‌ای. مهندسی زراعی، 37(2): 86-73.
  16. قویدل، ا.، ناجی راد، س.، و علیخانی، ح. 1395. جداسازی و مطالعه باکتری‌های بومی خاک‌های آلوده جنوب پالایشگاه تهران جهت زیست پالایی آلودگی‌های نفتی. دانش آب و خاک، 26(3): 175-185.
  17. کشاورز، س.، قاسمی فسائی، ر.، رونقی، ع.، زارعی، م. 1398. اثر برخی ریز جانداران در کاهش آلودگی یک خاک آهکی آلوده به نفت خام. زیست شناسی خاک، 7 (1): 39-29.
  18. مرادی، ش.، ساریخانی، م.، بهشتی آل آقا، ع.، ریحانی‌تبار، ع.، علوی‌کیا، س.س.، شریفی، ر. 1402. اثرات آلودگی نفتی طولانی مدت بر تنفس میکروبی و فعالیت آنزیم بتاگلوکوزیداز خاک‌. زیست شناسی خاک، 11 (2):230-213.
  19. نادری، ا.، محمدی، پ.، چوبکار، ن.، حسینی، س.ا. 1400. ارزیابی آلودگی نفتی و اولویت بندی راهبرد حفاظت محیط زیست دریای خزر بر اساس مدلSWOT . علوم و تکنولوژی محیط زیست، 23(6 (پیاپی 109) ): 173-161.
  20. نکیسا، ن.، بشارتی، ح.، دورودیان، ح. 1394. اثر باکتری باسیلوس سوبتلیس و مقادیر کودشیمیایی سوپرفسفات تریپل بر عملکرد و اجزای عملکرد دو رقم برنج (علی کاظمی و هاشمی). پژوهش های خاک، 29(3): 259-268.
  21. یاراحمدی، ز.، بشارتی، ح.، فلاح‌نصرت‌آباد، ع.، ساریخانی، م. 1391. تأثیر غلظت فسفر بر باکتری های تجزیه کننده مواد نفتی جداسازی شده از خاک های استان بوشهر در حضور فنانترن. مجله مدیریت خاک و تولید پایدار، 2(2): 165-172.
  22. Abdallah, D.B., Frikha-Gargouri, O. and Tounsi, S., 2018. Rizhospheric competence, plant growth promotion and biocontrol efficacy of Bacillus amyloliquefaciens subsp. plantarum strain 32a. Biological Control, 124, 61-67.
  23. Abdul-Ameer Ali, W., 2019. Biodegradation and phytotoxicity of crude oil hydrocarbons in an agricultural soil. Chilean journal of agricultural research, 79(2), 266-277.
  24. Abubakar, A., Abioye, O.P., Aransiola, S.A., Maddela, N.R. and Prasad, R., 2024. Crude oil biodegradation potential of lipase produced by Bacillus subtilis and Pseudomonas aeruginosa isolated from hydrocarbon contaminated soil. Environmental Chemistry and Ecotoxicology, 6, 26-32.
  25. Adipah, S. (2019). Introduction of petroleum hydrocarbons contaminants and its human effects. Journal of Environmental Science and Public Health, 3(1), 1-9.
  26. Ahmed, A.T., Othman, M.A., Sarwade, V.D. and Kachru, G.R., 2012. Degradation of anthracene by alkaliphilic bacteria Bacillus badius. 1(2), 2-9.
  27. Ahmed, F. and Fakhruddin, A.N.M., 2018. A review on environmental contamination of petroleum hydrocarbons and its biodegradation. International Journal of Environmental Sciences & Natural Resources, 11(3), 1-7.
  28. Al-Wahaibi, Y., Joshi, S., Al-Bahry, S., Elshafie, A., Al-Bemani, A. and Shibulal, B., 2014. Biosurfactant production by Bacillus subtilis B30 and its application in enhancing oil recovery. Colloids and Surfaces B: Biointerfaces, 114, 324-333.
  29. Ambaye, T.G., Chebbi, A., Formicola, F., Prasad, S., Gomez, F.H., Franzetti, A. and Vaccari, M., 2022. Remediation of soil polluted with petroleum hydrocarbons and its reuse for agriculture: Recent progress, challenges, and perspectives. Chemosphere, 293, p.133572.
  30. Aransiola, S.A., Afolabi, F., Joseph, F. and Maddela, N.R., 2022a. Soil Enzymes: Distribution, Interactions, and Influencing Factors. In Agricultural Biocatalysis (303-333). Jenny Stanford Publishing.
  31. Aransiola, S.A., Joseph, F., Oyedele, O.J. and Maddela, N.R., 2022b. Ecological Interplays in Microbial Enzymology: An Introduction. In Ecological Interplays in Microbial Enzymology (3-18). Singapore: Springer Nature Singapore.
  32. Ashjar, N., Keshavarzi, B., Moore, F., Soltani, N., Hooda, P.S. and Mahmoudi, M.R., 2022. TPH and PAHs in an oil-rich metropolis in SW Iran: Implication for source apportionment and human health. Human and Ecological Risk Assessment: An International Journal, 28(1), 58-78.
  33. Azadi, D. and Shojaei, H., 2020. Biodegradation of polycyclic aromatic hydrocarbons, phenol and sodium sulfate by Nocardia species isolated and characterized from Iranian ecosystems. Scientific reports, 10(1), 21860.
  34. Azubuike, C.C., Chikere, C.B. and Okpokwasili, G.C., 2016. Bioremediation techniques–classification based on site of application: principles, advantages, limitations and prospects. World Journal of Microbiology and Biotechnology, 32, 1-18.
  35. Behera, B.C., Singdevsachan, S.K., Mishra, R.R., Dutta, S.K. and Thatoi, H.N., 2014. Diversity, mechanism and biotechnology of phosphate solubilising microorganism in mangrove—a review. Biocatalysis and Agricultural Biotechnology, 3(2), 97-110.
  36. Bhandari, S., Poudel, D.K., Marahatha, R., Dawadi, S., Khadayat, K., Phuyal, S., Shrestha, S., Gaire, S., Basnet, K., Khadka, U. and Parajuli, N., 2021. Microbial enzymes used in bioremediation. Journal of Chemistry, 1,
  37. Callaghan, A. V., Gieg, L. M., Kropp, K. G., Suflita, J. M., & Young, L. Y., 2006. Comparison of mechanisms of alkane metabolism under sulfate-reducing conditions among two bacterial isolates and a bacterial consortium. Applied and Environmental Microbiology72(6), 4274-4282.
  38. Cerqueira, V.S., Hollenbach, E.B., Maboni, F., Vainstein, M.H., Camargo, F.A., Maria do Carmo, R.P. and Bento, F.M., 2011. Biodegradation potential of oily sludge by pure and mixed bacterial cultures. Bioresource technology, 102(23), 11003-11010.
  39. Chang, K.S., Lo, W.H., Lin, W.M., Wen, J.X., Yang, S.C., Huang, C.J. and Hsieh, H.Y., 2016. Microwave-assisted thermal remediation of diesel contaminated soil. Engineering Journal, 20(4), 93-100.
  40. Cheng, J., Zhuang, W., Li, N.N., Tang, C.L. and Ying, H.J., 2017. Efficient biosynthesis of d‐ribose using a novel co‐feeding strategy in Bacillus subtilis without acid formation. Letters in Applied Microbiology, 64(1), 73-78.
  41. Cherif-Silini, H., Silini, A., Yahiaoui, B., Ouzari, I. and Boudabous, A., 2016. Phylogenetic and plant-growth-promoting characteristics of Bacillus isolated from the wheat rhizosphere. Annals of Microbiology, 66, 1087-1097.
  42. Chonoko, UG., Abdullahi, IO., Ado, SA., Whong, CMZ., 2017. Hydrocarbon degradation by autochthonous species of Bacillus cereus and Pseudomonas aeruginosa Isolated from Kaduna Refinery Effluents. Cont J Biol, 10(2), 10–26.
  43. Da Cunha, C.D., Rosado, A.S., Sebastián, G.V., Seldin, L. and Von Der Weid, I., 2006. Oil biodegradation by Bacillus strains isolated from the rock of an oil reservoir located in a deep-water production basin in Brazil. Applied microbiology and biotechnology, 73, 949-959.
  44. Dadrasnia, A., Shahsavari, N. and Emenike, C.U., 2013. Remediation of contaminated sites. Hydrocarbon, p.65.
  45. Darwesh, O.M., Mahmoud, M.S., Barakat, K.M., Abuellil, A. and Ahmad, M.S., 2021. Improving the bioremediation technology of contaminated wastewater using biosurfactants produced by novel bacillus isolates. Heliyon, 7(12).
  46. Das, K. and Mukherjee, A.K., 2007. Crude petroleum-oil biodegradation efficiency of Bacillus subtilis and Pseudomonas aeruginosa strains isolated from a petroleum-oil contaminated soil from North-East India. Bioresource technology, 98(7), 1339-1345.
  47. Das, M., Bhattacharya, A., Banu, S. and Kotoky, J., 2017. Enhanced biodegradation of anthracene by Bacillus cereus strain JMG-01 isolated from hydrocarbon contaminated soils. Soil and Sediment Contamination: An International Journal, 26(5), 510-525.
  48. Das, S., Raj, R., Mangwani, N., Dash, H.R. and Chakraborty, J., 2014. Heavy metals and hydrocarbons: adverse effects and mechanism of toxicity. Microbial biodegradation and bioremediation, 23-54.
  49. Đokić, L., Narančić, T., Nikodinović-Runić, J., Bajkić, S. and Vasiljević, B., 2011. Four Bacillus sp. soil isolates capable of degrading phenol, toluene, biphenyl, naphthalene and other aromatic compounds exhibit different aromatic catabolic potentials. Archives of Biological Sciences, 63(4), 1057-1067.
  50. Elenga-Wilson, P.S., Kayath, C.A., Mokemiabeka, N.S., Nzaou, S.A.E., Nguimbi, E. and Ahombo, G., 2021. Profiling of indigenous biosurfactant‐producing bacillus isolates in the bioremediation of soil contaminated by petroleum products and olive oil. International Journal of Microbiology, 1, 9565930.
  51. Emami, S., Alikhani, H.A., Pourbabaee, A.A., Etesami, H., Motasharezadeh, B. and Sarmadian, F., 2020. Consortium of endophyte and rhizosphere phosphate solubilizing bacteria improves phosphorous use efficiency in wheat cultivars in phosphorus deficient soils. Rhizosphere, 14, 100196.
  52. Faridy, N., Torabi, E., Pourbabaee, A. A., Osdaghi, E., & Talebi, K. (2024). Efficacy of novel bacterial consortia in degrading fipronil and thiobencarb in paddy soil: a survey for community structure and metabolic pathways. Frontiers in Microbiology, 15, 1366951.
  53. Feyzi, H., Chorom, M. and Bagheri, G., 2020. Urease activity and microbial biomass of carbon in hydrocarbon contaminated soils. A case study of cheshmeh-khosh oil field, Iran. Ecotoxicology and environmental safety, 199, 110664.
  54. Fitriatin, B.N., Yuniarti, A., Turmuktini, T. and Ruswandi, F.K., 2014. The effect of phosphate solubilizing microbe producing growth regulators on soil phosphate, growth and yield of maize and fertilizer efficiency on Ultisol. Eurasian Journal of Soil Science, 3(2), 101-107.
  55. Fordwour, O. B., Luka, G., Hoorfar, M., & Wolthers, K. R. (2018). Kinetic characterization of acetone monooxygenase from Gordonia sp. strain TY-5. AMB Express8, 1-13.
  56. Gainer, A., Bresee, K., Hogan, N. and Siciliano, S.D., 2019. Advancing soil ecological risk assessments for petroleum hydrocarbon contaminated soils in Canada: Persistence, organic carbon normalization and relevance of species assemblages. Science of the total environment, 668, 400-410.
  57. Gao, H., Wu, M., Liu, H., Xu, Y., & Liu, Z. (2022). Effect of petroleum hydrocarbon pollution levels on the soil microecosystem and ecological function. Environmental Pollution293, 118511.
  58. García-Alcántara, J.A., Maqueda-Gálvez, A.P., Téllez-Jurado, A., Hernández-Martínez, R. and Lizardi-Jiménez, M.A., 2016. Maya crude-oil degradation by a Bacillus licheniformis consortium isolated from a Mexican thermal source using a bubble column bioreactor. Water, Air, & Soil Pollution, 227, 1-6.
  59. Geys, R., Soetaert, W. and Van Bogaert, I., 2014. Biotechnological opportunities in biosurfactant production. Current opinion in biotechnology, 30, 66-72.
  60. Ghoreishi, G., Alemzadeh, A., Mojarrad, M., & Djavaheri, M. (2017). Bioremediation capability and characterization of bacteria isolated from petroleum contaminated soils in Iran. Sustainable Environment Research, 27(4), 195-202.
  61. Giunta, M., Lo Bosco, D., Leonardi, G. and Scopelliti, F., 2019. Estimation of gas and dust emissions in construction sites of a motorway project. Sustainability, 11(24), 7218.
  62. Gudiña, E.J., Fernandes, E.C., Rodrigues, A.I., Teixeira, J.A. and Rodrigues, L.R., 2015. Biosurfactant production by Bacillus subtilis using corn steep liquor as culture medium. Frontiers in microbiology, 6, 126037.
  63. Gudiña, E.J., Rangarajan, V., Sen, R. and Rodrigues, L.R., 2013. Potential therapeutic applications of biosurfactants. Trends in pharmacological sciences, 34(12), 667-675.
  64. Gupta, G., Kumar, V. and Pal, A.K., 2019. Microbial degradation of high molecular weight polycyclic aromatic hydrocarbons with emphasis on pyrene. Polycyclic Aromatic Compounds, 39(2), 124-138.
  65. Harwood, C.R., Mouillon, J.M., Pohl, S. and Arnau, J., 2018. Secondary metabolite production and the safety of industrially important members of the Bacillus subtilis group. FEMS microbiology reviews, 42(6), 721-738.
  66. Hashem, A., Tabassum, B. and Abd_Allah, E.F., 2019. Bacillus subtilis: A plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi journal of biological sciences, 26(6), 1291-1297.
  67. Hashemi, N., Pourbabaee, A. A., Shariati, S. and Yadzanfar, N., 2024. Rapid phenanthrene biodegradation in highly calcareous saline sodic soil using an artificial halophile bacterial consortium. International Journal of Environmental Science and Technology, 1-12.
  68. Heyen, S., Scholz-Böttcher, B.M., Rabus, R. and Wilkes, H., 2021. Release of carboxylic acids into the exometabolome during anaerobic growth of a denitrifying bacterium with single substrates or crude oil. Organic Geochemistry, 154, 104179.
  69. Hou, Z., Mo, F. and Zhou, Q., 2023. Elucidating response mechanisms at the metabolic scale of Eisenia fetida in typical oil pollution sites: A native driver in influencing carbon flow. Environmental Pollution, 337, 122545.
  70. Ismailov, N.M. and Alieva, S.R., 2019. Potential role of groundwater in pollution of coastal water of the Caspian sea by organic pollutants. Arid ecosystems, 9, 202-208.
  71. Jabbar, N.M., Mohammed, A.K., Jabber, S.M. and Kadhim, E.H., 2019, July. The use of Mixed Bacterial Culture to improve the Biodegradation of Diesel Pollution. In IOP Conference Series: Materials Science and Engineering (Vol. 579, No. 1, 012011). IOP Publishing.
  72. Ji, Y., Mao, G., Wang, Y., & Bartlam, M. (2013). Structural insights into diversity and n-alkane biodegradation mechanisms of alkane hydroxylases. Frontiers in microbiology, 4, 58.
  73. Jouzani, G.S., Valijanian, E. and Sharafi, R., 2017. Bacillus thuringiensis: a successful insecticide with new environmental features and tidings. Applied microbiology and biotechnology, 101, 2691-2711.
  74. Kaida, N., Habib, S., Yasid, N.A. and Shukor, M.Y., 2018. Biodegradation of Petroleum hydrocarbons by Bacillus spp.: a review. Bioremediation Science and Technology Research, 6(2), 14-21.
  75. Kalami, R. and Pourbabaee, A.A., 2021. Investigating the potential of bioremediation in aged oil-polluted hypersaline soils in the south oilfields of Iran. Environmental Monitoring and Assessment, 193, 1-20.
  76. Kalvandi, S., Garousin, H., Pourbabaee, A.A. and Alikhani, H.A., 2022a. Formulation of a culture medium to optimize the production of lipopeptide biosurfactant by a new isolate of Bacillus: a soil heavy metal mitigation approach. Frontiers in Microbiology, 13, 785985.
  77. Kalvandi, S., Garousin, H., Pourbabaee, A.A. and Farahbakhsh, M., 2022b. The release of petroleum hydrocarbons from a saline-sodic soil by the new biosurfactant-producing strain of Bacillus sp. Scientific Reports, 12(1), 19770.
  78. Karigar, C.S. and Rao, S.S., 2011. Role of microbial enzymes in the bioremediation of pollutants: a review. Enzyme research, 2011(1), 805187.
  79. Karimi, S., Shariati, S., Pourbabaei, A.A., Alikhani, H.A. and Kalami, R., 2023. Determining sensitivity to heavy metals in surfactant-producing bacteria and their efficiency in removing Total petroleum hydrocarbons. Iranian Journal of Soil and Water Research, 54(10), 1565-1579.
  80. Kaspar, F., Neubauer, P. and Gimpel, M., 2019. Bioactive secondary metabolites from Bacillus subtilis: a comprehensive review. Journal of natural products, 82(7), 2038-2053.
  81. Kazemi, A., Parvaresh, H., Ghanatghestani, M. D. and Ghasemi, S., 2024. A study on source identification of contaminated soil with total petroleum hydrocarbons (aromatic and aliphatic) in the Ahvaz oil field. Environmental Monitoring and Assessment, 196 (9), 1-16.
  82. Kebria, D.Y., Khodadadi, A., Ganjidoust, H., Badkoubi, A. and Amoozegar, M.A., 2009. Isolation and characterization of a novel native Bacillus strain capable of degrading diesel fuel. International Journal of Environmental Science & Technology, 6, 435-442.
  83. Kiamarsi, Z., Soleimani, M., Nezami, A. and Kafi, M., 2019. Biodegradation of n-alkanes and polycyclic aromatic hydrocarbons using novel indigenous bacteria isolated from contaminated soils. International journal of environmental science and technology, 16(11), 6805-6816.
  84. Kim, J.S. and Crowley, D.E., 2007. Microbial diversity in natural asphalts of the Rancho La Brea Tar Pits. Applied and environmental microbiology, 73(14), 4579-4591.
  85. Khalid, S. A., & Elsherif, W. M., 2022. Types of microorganisms for biodegradation. In Handbook of biodegradable materials. Cham: Springer International Publishing.1-27.
  86. Kolsal, F., Akbal, Z., Liaqat, F., Gök, O., Sponza, D.T. and Eltem, R., 2017. Hydrocarbon degradation abilities of psychrotolerant Bacillus strains. AIMS microbiology, 3(3), 467.
  87. Kumar, M., León, V., De Sisto Materano, A. and Ilzins, O.A., 2007. A halotolerant and thermotolerant Bacillus sp. degrades hydrocarbons and produces tensio-active emulsifying agent. World Journal of Microbiology and Biotechnology, 23(2), 211-220.
  88. Leñini, C., Rodriguez Ayala, F., Goñi, A. J., Rateni, L., Nakamura, A., & Grau, R. R. (2023). Probiotic properties of Bacillus subtilis DG101 isolated from the traditional Japanese fermented food nattō. Frontiers in Microbiology, 14, 1253480.
  89. Li, Y., Wang, X. and Sun, Z. 2020. Ecotoxicological effects of petroleum-contaminated soil on the earthworm Eisenia fetida. Journal of hazardous materials, 393, 122384.
  90. Liu, B., Liu, J., Ju, M., Li, X. and Yu, Q., 2016. Purification and characterization of biosurfactant produced by Bacillus licheniformis Y-1 and its application in remediation of petroleum contaminated soil. Marine pollution bulletin, 107(1), 46-51.
  91. Liu, Q., Chen, H., Su, Y., Sun, S., Zhao, C., Zhang, X., Gu, Y. and Li, L., 2023. Enhanced crude oil degradation by remodeling of crude oil-contaminated soil microbial community structure using sodium alginate/graphene oxide/Bacillus C5 immobilized pellets. Environmental Research, 223, 115465.
  92. Madigan, M.T., Clark, D.P., Stahl, D. and Martinko, J.M., 2010. Brock biology of microorganisms 13th edition. Benjamin Cummings.
  93. Mandree, P., Masika, W., Naicker, J., Moonsamy, G., Ramchuran, S. and Lalloo, R., 2021. Bioremediation of polycyclic aromatic hydrocarbons from industry contaminated soil using indigenous bacillus spp. Processes, 9(9), 1606.
  94. Mansur, A.A., Adetutu, E.M., Makadia, T., Morrison, P.D. and Ball, A.S., 2015. Assessment of the hydrocarbon degrading abilities of three bioaugmentation agents for the bioremediation of crude oil tank bottom sludge contaminated Libyan soil. Int J Environ Bioremed Biodegrad, 3(1), 1-9.
  95. Masika, W.S., Moonsamy, G., Mandree, P., Ramchuran, S., Lalloo, R. and Kudanga, T., 2020. Biodegradation of petroleum hydrocarbon waste using consortia of Bacillus sp. Bioremediation Journal, 25(1), 72-79.
  96. Mauti, G.O., Onguso, J., Kowanga, D.K. and Mauti, E.M., 2016. Biodegradation activity of Aspergillus niger lipase isolates from a tropical country garage. Journal of Scientific and Innovative Research, 5(1), 15-18.
  97. Mbachu, A. E., Chukwura, E. I., & Mbachu, N. A., 2020. Role of microorganisms in the degradation of organic pollutants: a review. Energy Environ Eng, 7(1), 1-11.
  98. McKenney, P.T., Driks, A. and Eichenberger, P., 2013. The Bacillus subtilis endospore: assembly and functions of the multilayered coat. Nature Reviews Microbiology, 11(1), 33-44.
  99. Meena, V.S., Maurya, B.R., Meena, S.K., Meena, R.K., Kumar, A., Verma, J.P. and Singh, N.P., 2016. Can Bacillus species enhance nutrient availability in agricultural soils?. Bacilli and agrobiotechnology, 367-395.
  100. Mekonnen, B. A., Aragaw, T. A., and Genet, M. B., 2024. Bioremediation of petroleum hydrocarbon contaminated soil: a review on principles, degradation mechanisms, and advancements. Frontiers in Environmental Science, 12, 1354422.
  101. Michael-Igolima, U., Abbey, S.J. and Ifelebuegu, A.O., 2022. A systematic review on the effectiveness of remediation methods for oil contaminated soils. Environmental Advances, 9, 100319.
  102. Moghaddam, A.H., Hashemi, S.H. and Ghadiri, A., 2021. Aliphatic hydrocarbons in urban runoff sediments: A case study from the megacity of Tehran, Iran. Journal of Environmental Health Science and Engineering, 19(1), 205.
  103. Mohsin, M.Z., Omer, R., Huang, J., Mohsin, A., Guo, M., Qian, J. and Zhuang, Y., 2021. Advances in engineered Bacillus subtilis biofilms and spores, and their applications in bioremediation, biocatalysis, and biomaterials. Synthetic and systems biotechnology, 6(3), 180-191.
  104. Musat, F., 2015. The anaerobic degradation of gaseous, nonmethane alkanes—From in situ processes to microorganisms. Computational and structural biotechnology journal, 13, 222-228.
  105. Nardini, E., Kisand, V. and Lettieri, T., 2010. Microbial biodiversity and molecular approach. JCR Scientific and Technical Reports. Luxembourg: Office for Official Publications of European Communities.
  106. Nasrollahi, M., Pourbabaei, A. A., Etesami, H., and Talebi, K., 2020. Diazinon degradation by bacterial endophytes in rice plant (Oryzia sativa L.): a possible reason for reducing the efficiency of diazinon in the control of the rice stem–borer. Chemosphere, 246, 125759.
  107. Nicholson, S.E., Yin, X. and Ba, M.B., 2000. On the feasibility of using a lake water balance model to infer rainfall: an example from Lake Victoria. Hydrological Sciences Journal, 45(1), 75-95.
  108. Nosratabad, A.R.F., Etesami, H. and Shariati, S., 2017. Integrated use of organic fertilizer and bacterial inoculant improves phosphorus use efficiency in wheat (Triticum aestivum L.) fertilized with triple superphosphate. Rhizosphere, 3, 109-111.
  109. Nozari, M., Samaei, M.R., Dehghani, M. and Ebrahimi, A.A., 2018. Bioremediation of alkane hydrocarbons using bacterial consortium from soil. Health Scope, 7(3), 1-8.
  110. Ortiz, A. and Sansinenea, E., 2022. The Industrially important enzymes from bacillus species. In Bacilli in Agrobiotechnology: Plant Stress Tolerance, Bioremediation, and Bioprospecting (89-99). Cham: Springer International Publishing.
  111. Ossai, I.C., Ahmed, A., Hassan, A. and Hamid, F.S., 2020. Remediation of soil and water contaminated with petroleum hydrocarbon: A review. Environmental Technology & Innovation, 17, 100526.
  112. Oteino, N., Lally, R.D., Kiwanuka, S., Lloyd, A., Ryan, D., Germaine, K.J. and Dowling, D.N., 2015. Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Frontiers in microbiology, 6, 745.
  113. Pandolfo, E., Barra Caracciolo, A., & Rolando, L. (2023). Recent advances in bacterial degradation of hydrocarbons. Water, 15(2), 375.
  114. Parthipan, P., Preetham, E., Machuca, L. L., Rahman, P. K., Murugan, K., & Rajasekar, A. (2017). Biosurfactant and degradative enzymes mediated crude oil degradation by bacterium Bacillus subtilis A1. Frontiers in microbiology, 8, 193.
  115. Parthipan, P., Preetham, E., Machuca, L.L., Rahman, P.K., Murugan, K. and Rajasekar, A., 2017. Biosurfactant and degradative enzymes mediated crude oil degradation by bacterium Bacillus subtilis A1. Frontiers in microbiology, 8, 237675.
  116. Parvizimosaed, H., sobhan, A.S., Merrikhpour, H., Farmany, A., Cheraghi, M. and Ashorlo, S., 2015. The effect of urban fuel stations on soil contamination with petroleum hydrocarbons. Iranian Journal of Toxicology, 9 (30), 1378-1384.
  117. Pavel, L.V. and Gavrilescu, M., 2008. Overview of ex situ decontamination techniques for soil cleanup. Environmental Engineering & Management Journal (EEMJ), 7(6).
  118. Perelo, L.W., 2010. In situ and bioremediation of organic pollutants in aquatic sediments. Journal of hazardous materials, 177(1-3), 81-89.
  119. Perera, M., Wijesundera, S., Wijayarathna, C. D., Seneviratne, G., & Jayasena, S. (2022). Identification of long-chain alkane-degrading (LadA) monooxygenases in Aspergillus flavus via in silico analysis. Frontiers in Microbiology13, 898456.
  120. Poornachander Rao, M., Rajithasri, A.B., Sagar, K. and Satyaprasad, K., 2015. Isolation of polycyclic aromatic hydrocarbons degrading PGPR from a oil products contaminated site in Hyderabad, Telangana State, India. International Journal of Pharma and Bio Sciences, 6, B305-B317.
  121. Pourbabaee, A.A., Shahriari, M.H. and Garousin, H., 2019. Biodegradation of phenanthrene as a model hydrocarbon: Power display of a super-hydrophobic halotolerant enriched culture derived from a saline-sodic soil. Biotechnology reports, 24, e00388.
  122. Raja, P., Karthikeyan, P., Marigoudar, S.R., Sharma, K.V. and Murthy, M.V.R., 2022. Spatial distribution of total petroleum hydrocarbons in surface sediments of Palk Bay, Tamil Nadu, India. Environmental Chemistry and Ecotoxicology, 4, 20-28.
  123. Rajaoalison, H., Knez, D. and Zamani, M.A.M., 2022. A multidisciplinary approach to evaluate the environmental impacts of hydrocarbon production in Khuzestan Province, Iran. Energies, 15(22), 8656.
  124. Reddy, K.R., 2013. Electrokinetic remediation of soils at complex contaminated sites: Technology status, challenges, and opportunities. Coupled Phenomena in Environmental Geotechnics–Manassero et al (Eds).–2013.–CRC Press, Taylor & Francis Group, 131-147.
  125. Roccatano, D., 2015. Structure, dynamics, and function of the monooxygenase P450 BM-3: insights from computer simulations studies. Journal of Physics: Condensed Matter, 27(27), 273102.
  126. Rodrigo, M.A., Oturan, N. and Oturan, M.A., 2014. Electrochemically assisted remediation of pesticides in soils and water: a review. Chemical reviews, 114(17), 8720-8745.
  127. Rodrı́guez, H. and Fraga, R., 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology advances, 17(4-5), 319-339.
  128. Rojas-Aparicio, A., Hernández-Eligio, J.A., Toribio-Jiménez, J., Rodríguez-Barrera, M.Á., Castellanos-Escamilla, M. and Romero-Ramírez, Y., 2018. Genetic expression of pobA and fabHB in Bacillus licheniformis M2-7 in the presence of benzo [a] pyrene. Genet Mol Res, 17(2).
  129. Rothman, S., Liebow, C. and Isenman, L., 2002. Conservation of digestive enzymes. Physiological Reviews, 82(1), 1-18.
  130. Saeed, M., Ilyas, N., Bibi, F., Jayachandran, K., Dattamudi, S. and Elgorban, A.M., 2022. Biodegradation of PAHs by Bacillus marsiflavi, genome analysis and its plant growth promoting potential. Environmental Pollution, 292, 118343.
  131. Saeid, A., Prochownik, E. and Dobrowolska-Iwanek, J., 2018. Phosphorus solubilization by Bacillus species. Molecules, 23(11), 2897.
  132. Saksa, P., 2017. Electrically assisted soil remediation. INSURE Geosto Report.
  133. Sales da Silva, I.G., Gomes de Almeida, F.C., Padilha da Rocha e Silva, N.M., Casazza, A.A., Converti, A. and Asfora Sarubbo, L., 2020. Soil bioremediation: Overview of technologies and trends. Energies, 13(18), 4664.
  134. Sansinenea, E., 2019. Bacillus spp.: As plant growth-promoting bacteria. Secondary metabolites of plant growth promoting rhizomicroorganisms: Discovery and applications, 225-237.
  135. Santos, D.K.F., Rufino, R.D., Luna, J.M., Santos, V.A. and Sarubbo, L.A., 2016. Biosurfactants: multifunctional biomolecules of the 21st century. International journal of molecular sciences, 17(3), 401.
  136. Sattar, S., Siddiqui, S., Shahzad, A., Bano, A., Naeem, M., Hussain, R., Khan, N., Jan, B.L. and Yasmin, H., 2022. Comparative analysis of microbial consortiums and nanoparticles for rehabilitating petroleum waste contaminated soils. Molecules, 27(6), 1945.
  137. Shah, G., & Soni, V. (2024). Comprehensive Insights into the Impact of Oil Pollution on the Environment. Regional Studies in Marine Science, 103516.
  138. Shaimerdenova, U., Kaiyrmanova, G., Lewandowska, W., Bartoszewicz, M., Swiecicka, I. and Yernazarova, A., 2024. Biosurfactant and biopolymer producing microorganisms from West Kazakhstan oilfield. Scientific Reports, 14(1), 2294.
  139. Shakiba, M., Sohrabi, T., Mirzaei, F. and Pourbabaee, A.A., 2019. Assessment of the BTEX biodegradation by Bacillus thuringiensis and Bacillus sp. under nitrate reducing condition. Iranian Journal of Soil and Water Research, 50(3), 713-724.
  140. Sharma, B., Dangi, A.K. and Shukla, P., 2018. Contemporary enzyme based technologies for bioremediation: a review. Journal of environmental management, 210, 10-22.
  141. Sharma, I., 2020. Bioremediation techniques for polluted environment: concept, advantages, limitations, and prospects. In Trace metals in the environment-new approaches and recent advances. IntechOpen.
  142. ShirzadianGilan, R., Parvizi, Y., Pazira, E. and Rejali, F., 2023. Remediation capacity of drought-tolerant plants and bacteria in petroleum hydrocarbon-contaminated soil in Iran. South African Journal of Botany, 153, 1-10.
  143. Sivasakthi, S., Usharani, G. and Saranraj, P., 2014. Biocontrol potentiality of plant growth promoting bacteria (PGPR)-Pseudomonas fluorescens and Bacillus subtilis: A review. Afr. J. Agric. Res, 9(16), 1265-1277.
  144. Sohail, R., Jamil, N., Ali, I., & Munir, S. (2020). Animal fat and glycerol bioconversion to polyhydroxyalkanoate by produced water bacteria. e-Polymers, 20(1), 92-102.
  145. Sorkhoh, N.A., Ibrahim, A.S., Ghannoum, M.A. and Radwan, S.S., 1993. High-temperature hydrocarbon degradation by Bacillus stearothermophilus from oil-polluted Kuwaiti desert. Applied Microbiology and Biotechnology, 39, 123-126.
  146. Surendra, S.V., Mahalingam, B.L. and Velan, M., 2017. Degradation of monoaromatics by Bacillus pumilus MVSV3. Brazilian Archives of Biology and Technology, 60, e16160319.
  147. Taher, A.M. and Saeed, I.O., 2022, October. Bioremediation of contaminated soil with crude oil using two different bacteria. In AIP Conference Proceedings (Vol. 2398, No. 1). AIP Publishing.
  148. Thirumurugan, D., Kokila, D., Balaji, T., Rajamohan, R., AlSalhi, M.S., Devanesan, S., Rajasekar, A. and Parthipan, P., 2023. Impact of biosurfactant produced by Bacillus spp. on biodegradation efficiency of crude oil and anthracene. Chemosphere, 344, 140340.
  149. Tripathi, V., Gaur, V.K., Kaur, I., Srivastava, P.K. and Manickam, N., 2024. Unlocking bioremediation potential for site restoration: A comprehensive approach for crude oil degradation in agricultural soil and phytotoxicity assessment. Journal of Environmental Management, 355, 120508.
  150. Truskewycz, A., Gundry, T.D., Khudur, L.S., Kolobaric, A., Taha, M., Aburto-Medina, A., Ball, A.S. and Shahsavari, E., 2019. Petroleum hydrocarbon contamination in terrestrial ecosystems—fate and microbial responses. Molecules, 24(18), 3400.
  151. Turnbull, P.C., Kramer, J.M. and Melling, J., 1996. Bacillus. Medical microbiology, 4, 233.
  152. Uzoigwe, C., Burgess, J.G., Ennis, C.J. and Rahman, P.K., 2015. Bioemulsifiers are not biosurfactants and require different screening approaches. Frontiers in microbiology, 6, 245.
  153. Van Beilen, J.B. and Funhoff, E.G., 2007. Alkane hydroxylases involved in microbial alkane degradation. Applied microbiology and biotechnology, 74, 13-21.
  154. Van Beilen, J.B., Smits, T.H., Whyte, L.G., Schorcht, S., Röthlisberger, M., Plaggemeier, T., Engesser, K.H. and Witholt, B., 2002. Alkane hydroxylase homologues in Gram‐positive strains. Environmental Microbiology, 4(11), 676-682.
  155. Varavipour, M. and Mashal Soltani, J., 2013. Bioremediation of petroleum contaminated soil with poly nuclear aromatic hydrocarbons (PAHs) in southern region of Iran. Res Crops, 14, 1258-1263.
  156. Varjani, S.J. and Upasani, V.N., 2017. A new look on factors affecting microbial degradation of petroleum hydrocarbon pollutants. International Biodeterioration & Biodegradation, 120, 71-83.
  157. Wang, D., Lin, J., Lin, J., Wang, W. and Li, S., 2019. Biodegradation of petroleum hydrocarbons by Bacillus subtilis BL-27, a strain with weak hydrophobicity. Molecules, 24(17), 3021.
  158. Wang, W., Zhao, J. and Zhang, Z., 2022. Bacillus metabolites: compounds, identification and anti-Candida albicans mechanisms. Microbiology Research, 13(4), 972-984.
  159. Wentzel, A., Ellingsen, T. E., Kotlar, H. K., Zotchev, S. B., and Throne-Holst, M., 2007. Bacterial metabolism of long-chain n-alkanes. Applied microbiology and biotechnology, 76, 1209-1221.
  160. Winkler, J. R., and Gray, H. B., 2015. Electron flow through biological molecules: does hole hopping protect proteins from oxidative damage?. Quarterly reviews of biophysics, 48(4), 411-420.
  161. Wu, B., Xiu, J., Yu, L., Huang, L., Yi, L. and Ma, Y., 2022. Biosurfactant production by Bacillus subtilis SL and its potential for enhanced oil recovery in low permeability reservoirs. Scientific Reports, 12(1), 7785.
  162. Xiao, M., Zhang, Z.Z., Wang, J.X., Zhang, G.Q., Luo, Y.J., Song, Z.Z. and Zhang, J.Y., 2013. Bacterial community diversity in a low-permeability oil reservoir and its potential for enhancing oil recovery. Bioresource technology, 147, 110-116.
  163. Xu, X., Liu, W., Tian, S., Wang, W., Qi, Q., Jiang, P., Gao, X., Li, F., Li, H. and Yu, H., 2018. Petroleum hydrocarbon-degrading bacteria for the remediation of oil pollution under aerobic conditions: a perspective analysis. Frontiers in microbiology, 9, 2885.
  164. Yan, S., Wang, Q., Qu, L. and Li, C., 2013. Characterization of oil-degrading bacteria from oil-contaminated soil and activity of their enzymes. Biotechnology & Biotechnological Equipment, 27(4), 3932-3938.
  165. Yang, Y., Wang, J., Liao, J., Xie, S. and Huang, Y., 2015. Abundance and diversity of soil petroleum hydrocarbon-degrading microbial communities in oil exploring areas. Applied microbiology and biotechnology, 99, 1935-1946.
  166. Yap, H. S., Zakaria, N. N., Zulkharnain, A., Sabri, S., Gomez-Fuentes, C., and Ahmad, S. A., 2021. Bibliometric analysis of hydrocarbon bioremediation in cold regions and a review on enhanced soil bioremediation. Biology, 10(5), 354.
  167. Yin, C. F., Xu, Y., Li, T., and Zhou, N. Y., 2022. Wide distribution of the sad gene cluster for sub‐terminal oxidation in alkane utilizers. Environmental Microbiology, 24(12), 6307-6319.
  168. Yong, Y.C. and Zhong, J.J., 2010. Recent advances in biodegradation in China: new microorganisms and pathways, biodegradation engineering, and bioenergy from pollutant biodegradation. Process Biochemistry, 45(12), 1937-1943.
  169. Yu, G.Y., Sinclair, J.B., Hartman, G.L. and Bertagnolli, B.L., 2002. Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil Biology and Biochemistry, 34(7), 955-963.