شناسایی و بررسی خصوصیات محرک رشدی و بیوکنترلی قارچ‌های اندوفیت جدا شده از برگ و میوه پسته

نویسندگان

1 استادیار، موسسه تحقیقات خاک و آب، سازمان تحقیقات آموزش و ترویج کشاورزی، کرج، ایران

2 دانشیار، موسسه تحقیقات خاک و آب، سازمان تحقیقات آموزش و ترویج کشاورزی، کرج، ایران

چکیده

قارچ­های اندوفیت با سازوکارهای مختلف باعث افزایش رشد گیاه و همچنین مقاومت آن به تنش­های زنده و غیرزنده می­شوند. به این منظور جهت شناسایی قارچ­های اندوفیت درخت پسته و ارزیابی ویژگی­های محرک رشدی و بیوکنترلی آن­ها، از برگ و میوه درختان سالم پسته شهرستان رفسنجان نمونه­برداری انجام گرفت. پس از شناسایی ریخت­شناسی و مولکولی، فاکتورهای محرک رشدی از قبیل تولید اکسین، سیدروفور، حل کنندگی فسفات معدنی و فعالیت بیوکنترلی این قارچ­ها از طریق تولید کیتیناز و سیانید هیدروژن ارزیابی گردید. مقایسه میانگین داده­ها نشان داد که بیشترین میزان تولید اکسین در سطح صفر و 50 میلی­گرم در لیتر تریپتوفان به ترتیب به میزان 34/19 و 88/32 میلی­گرم در لیتر توسطTrichoderma atroviride TA2-2-1 تولید گردید. بیشترین میزان سیدروفور توسط Quambalaria cyanescens QC11-3-2  تولید شد که نسبت قطر هاله به پرگنه 96/2 بود. تنهاByssochlamys nivea BN1-1-1 قابلیت تولید حل کنندگی فسفات معدنی را داشت که نسبت قطر هاله به پرگنه 1/1 بود. بیشترین فعالیت کیتینازی به ترتیب در جدایه TH5-1-2 Trichoderma harzianum (U/mL 92/2) وT. atroviride TA2-2-1 (U/mL 34/2) مشاهده شد. گونه­هایT. atroviride TA2-2-1  و Clonostachys rosea CR2-3-1 قادر به تولید به مقدار زیاد سیانید هیدروژن (درجه 5) بودند. 

کلیدواژه‌ها


عنوان مقاله [English]

Identification and Evaluation of Growth Promoting and Biocontrol Properties of Isolated Endophytic Fungi from the leaves and fruits of Pistacia vera

نویسندگان [English]

  • H. Kari Dolatabad 1
  • H. Asadi Rahmani 2
  • F. Rejali 2
1 Assistant professor, Soil and Water Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
2 Associate professor, Soil and Water Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
چکیده [English]

Endophytic fungi increase plant growth and confer stress resistance to plants  with different mechanisms. In order to identify endophytic fungiof Pistacia vera and to evaluate their growth promoting and biocontrol properties, samples were taken fromthe leaves and fruits of Pistacia vera in Rafsanjan. After morphological and molecular identification, Growth stimulating factors were evaluated by estimating auxin production, siderophore production and inorganic phosphate solubilizing activity. Biocontrol activities were evaluated based on chitinase and hydrogen cyanide production. Mean comparison of the data showed that the highest amounts of auxin at levels of 0 and 50 mg/L of tryptophan were produced with Trichoderma atroviride TA2-2-1as the amount of 19.34 and 32.88 mg/L, respectively. Quambalaria cyanescens QC11-3-2 produced the highest amount of siderophore which the ratio of the diameter of the halo zone to the colony was 2.96. Only, Byssochlamys nivea BN1-1-1had the ability to solubilize the inorganic phosphate which the ratio of the halo zone diameter to the colony diameter was 1/1. Most chitinase activities were observed by Trichoderma harzianum TH 5-1-2 (2.92 U/mL) and T. atroviride TA2-2-1 (2.34 U/mL), respectively. T. atroviride TA2-2-1 and Clonostachys rosea CR2-3-1 were able to produce the HCN. 

کلیدواژه‌ها [English]

  • Chitinase
  • Endophyte
  • Hydrogen cyanide
  • Siderophore
  1. Alexander, D.B. and Zuberer, D.A. 1991. Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biology and Fertility of Soils 12(1): 39-45.
  2. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D.J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25(17): 3389-3402.
  3. Asgari, B. and Zare, R. 2011. The genus Chaetomium in Iran, a phylogenetic study including six new species. Mycologia 103(4): 863-882.
  4. Bent, E., Tvzun, S., Chanway, C.P. and Enebak, S. 2001. Alterations in plant growth and root hormone levels of lodge pole pines inoculated with rhizobacteria. Canadian Journal of Microbiology 47: 793-800.
  5. Boopathi, E. and Rao, K.S. 1999. A siderophore from Pseudomonas putida type A1: structural and biological characterization. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology 1435(1): 30-40.
  6. Cardoso, R.A., Pires, L.T.A., Zucchi, T.D., Zucchi, F.D. and Zucchi, T.M.A.D. 2010. Mitotic crossing-over induced by two commercial herbicides in diploid strains of the fungus Aspergillus nidulans. Genetics and Molecular Research 9(1): 231-238.
  7. Donate-Correa, J., Leon-Barrios, M. and Perez-Galdona, R. 2004. Screening for plant growth-promoting rhizobacteria in Chamaecytisus proliferus (tagasaste), a forage treeshrub legume endemic to the Canary Island. Plant Soil 266: 261-272.
  8. Doyle, J.J. and  Doyle, J.L. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19: 11-15.
  9. El-Katatny, M.H., Somitsch, W., Robra, K.H., El-Katatny, M.S. and Gübitz, G.M. 2000. Production of chitinase and β-1, 3-glucanase by Trichoderma harzianum for control of the phytopathogenic fungus Sclerotium rolfsii. Food Technology and Biotechnology 38(3): 173-180.
  10. Ershad, D. 2009. Fungi of Iran. Iranian Research Institute of Plant Protection, Tehran, pp.531.
  11. Gharizadeh, K.H., Khodaparast, S.A., Elahinia, S.A. and Abbasi, M. 2004. A study on the identification of wood inhabiting Hyphomycetes in Guilan province, Iran (2). Rostaniha 5(2): 123-145. (in Persian with English abstract).
  12. Gokul, B., Lee, J.H., Rhee, S.K. and Panda, T. 2000. Characterization and applications of chitinases from Trichoderma harzianum-A review. Bioprocess Engineering 23: 691-694.
  13. Harman, G.E. 2006. Overview of mechanisms and uses of Trichoderma spp. Phytopathology 96(2): 190-194.
  14. Hemmati, V. 2017. Identification, characterization and evaluation of PGP traits in some bacterial strains isolated from rhizosphere of wheat . M.Sc. Thesis, Islamic Azad University, Karaj, Iran.
  15. Hergheli, N. 2013. Isolation and identification of endophytic fungi in grapevine trees (Vitis vinifera L.) in West Azerbaijan province. M.Sc. Thesis, Tehran University, Tehran, Iran.
  16. Howell, C.R. 2003. Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Disease 87(1): 4-10.
  17. Jam Ashkezari, S. 2013. Identification of endophytic fungi of common yew (Taxus baccata). M.Sc. Thesis, Tehran University, Tehran, Iran.
  18. Johnson, L.J., Koulman, A., Christensen, M., Lane, G.A., Fraser, K., Forester, N., Johnson, R.D., Bryan, G.T. and Rasmussen, S. 2013. An extracellular siderophore is required to maintain the mutualistic interaction of Epichloë festucae with Lolium perenne. PLOS Pathogens 9(5), p.e1003332.
  19. Kumar, S. and Kaushik, N. 2013. Endophytic fungi isolated from oil-seed crop Jatropha curcas produces oil and exhibit antifungal activity. PloS one 8(2), p.e56202.
  20. Kumar, S., Kaushik, N., Edrada-Ebel, R., Ebel, R. and Proksch, P. 2011. Isolation, characterization, and bioactivity of endophytic fungi of Tylophora indica. World Journal of Microbiology and Biotechnology 27(3): 571-577.
  21. Li, H.Y., Zhao, C.A., Liu, C.J. and Xu, X.F. 2010. Endophytic fungi diversity of aquatic/riparian plants and their antifungal activity in vitro. The Journal of Microbiology 48(1): 1-6.
  22. Liang, H., Xing, Y., Chen, J., Zhang, D., Guo, S. and Wang, C. 2012. Antimicrobial activities of endophytic fungi isolated from Ophiopogon japonicus (Liliaceae). BMC Complementary and Alternative Medicine 12(1), p. 238.
  23. Maria, G.L. Sridhar, K.R. and Raviraja, N.S. 2005. Antimicrobial and enzyme activity of mangrove endophytic fungi of southwest coast of India. Journal of Agricultural Technology 1(1): 67-80.
  24. Monte, E. 2001. Understanding Trichoderma: between biotechnology and microbial ecology. International Microbiology 4(1): 1-4.
  25. Muzzarelli, R., Jeuniaux, C. and Gooday, G.W. 1986. Chitin in nature and technology. New York: Plenum Press 435-442.
  26. Nadine, J., Coste, D.V., Gadkar, J. and Filion, M. 2010. Verticillium dahliae alters Pseudomonas spp. populations and HCN gene expression in the rhizosphere of strawberry. The Journal of Microbiology 56 (11): 906-915.
  27. Naeimi, S., Okhovvat, S.M., Javan-Nikkhah, M., Kredics, L. and Khosravi, V. 2008. Introducing Trichoderma spp. Isolated from rice fields in Mazanderan Province, Iran. Proceedings of the 18th Iranian Plant protection Congress, Vol II, 24-24 Aug., Hamedan, Iran. p.626.
  28. Naik, B.S. Shashikala, J. and Krishnamurthy, Y.L. 2009. Study on the diversity of endophytic communities from rice (Oryza sativa L.) and their antagonistic activities in vitro. Microbiological Research 164(3): 290-296.
  29. Narisawa, K., Kawamata, H., Currah, R.S. and Hashiba, T. 2002. Suppression of Verticillium wilt in eggplant by some fungal root endophytes. European Journal of Plant Pathology 108(2): 103-109.
  30. Nosrati, R., Owlia, P., Saderi, H., Rasooli, I. and Malboobi, M.A. 2014. Phosphate solubilization characteristics of efficient nitrogen fixing soil Azotobacter strains. Iranian Journal of Microbiology 6(4): 285–295.
  31. Pérez, C.A., De Beer, Z.W., Altier, N.A., Wingfield, M.J. and Blanchette, R.A. 2008. Discovery of the eucalypt pathogen Quambalaria eucalypti infecting a non-Eucalyptus host in Uruguay. Australasian Plant Pathology 37(6): 600-604.
  32. Prathyusha, P., Rajitha Sri, A.B., Ashokvardhan, T. and Satya Prasad, K. 2015. Antimicrobial and siderophore activity of the endophytic fungus Acremonium sclerotigenum inhabiting Terminalia bellerica Roxb. International Journal of Pharmaceutical Sciences Review and Research 30(1): 84-87.
  33. Rajulu, M.B.G., Thirunavukkarasu, N., Suryanarayanan, T.S., Ravishankar, J.P., El Gueddari, N.E. and Moerschbacher, B.M. 2011. Chitinolytic enzymes from endophytic fungi. Fungal Diversity 47(1): 43-53.
  34. Rojas-Avelizapa L.I., Cruz-Camarillo R., Guerrero M.I., Rodríguez-Vázquez R. and Ibarra J.E. 1999. Selection and characterization of a proteo-chitinolytic strain of Bacillus thuringiensis, able to grow in shrimp waste media. World Journal of Microbiology and Biotechnology 15(2): 299-308.
  35. Schroers, H.J., Samuels, G.J., Seifert, K.A. and Gams, W. 1999. Classification of the mycoparasite Gliocladium roseum in Clonostachys as C. rosea, its relationship to Bionectria ochroleuca, and notes on other Gliocladium-like fungi. Mycologia 365-385.
  36. Schulz, B., Boyle, C., Draeger, S., Römmert, A.K. and Krohn, K. 2002. Endophytic fungi: a source of novel biologically active secondary metabolites. Mycological Research 106(09): 996-1004.
  37. Soleimani, N. 2014. Identification of some endophytic fungi in rice (Oryza sativa L.). M.Sc. Thesis, Tehran University, Tehran, Iran.
  38. Souza, J.J.D., Vieira, I.J.C., Rodrigues-Filho, E. and Braz-Filho, R. 2011. Terpenoids from endophytic fungi. Molecules 16(12): 10604-10618.
  39. Strobel, G.A. 2003. Endophytes as sources of bioactive products. Microbes and infection 5(6): 535-544.
  40. Tahmasebi, F., Lakzian, A., Khavazi, K., Pakdin Parizi, A .2014. Isolation, Identification and evaluation of sidrophore production in Pseudomonas bacteria and its effect on hydroponically grown corn. Iranian Journal of Biology 27(1):75-87. (in Persian with English abstract).
  41. Tan, R.X. and Zou, W.X. 2001. Endophytes: a rich source of functional metabolites. Natural Product Reports 18(4): 448-459.
  42. Vassilev, N., Baca, M.T., Vassileva, M., Fracol, I. and Azcon, R. 1995. Rock phosphate solubilization by Aspergillus niger grown on sugar-­beet wastes. Applied Microbiology and Biotechnology 44: 546-549.
  43. Vaz, A.B., Mota, R.C., Bomfim, M.R.Q., Vieira, M.L., Zani, C.L., Rosa, C.A. and Rosa, L.H. 2009. Antimicrobial activity of endophytic fungi associated with Orchidaceae in Brazil. Canadian Journal of Microbiology 55(12): 1381-1391.
  44. Viterbo, A., Haran, S., Friesem, D., Ramot, O., Chet, I. 2001. Antigungal activity of a novel endochitinase gene (chit36) form Trichoderma harzianum Rifai TM. FEMS Microbiology 200(2): 169-174.
  45. Waqas, M., Khan, A.L., Kamran, M., Hamayun, M., Kang, S.M., Kim, Y.H. and Lee, I.J. 2012. Endophytic fungi produce gibberellins and indoleacetic acid and promotes host-plant growth during stress. Molecules 17(9): 10754-10773.
  46. White, T.J., Bruns, T., Lee, S.J.W.T. and Taylor, J.W. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols: a Guide to Methods and Applications 18(1): 315-322.
  47. Yuan, Z.L., Su, Z.Z., Mao, L.J., Peng, Y.Q., Yang, G.M., Lin, F.C. and Zhang, C.L. 2011. Distinctive endophytic fungal assemblage in stems of wild rice (Oryza granulata) in China with special reference to two species of Muscodor (Xylariaceae). The Journal of Microbiology 49(1): 15-23.
  48. Zafari, D., Zare, R., Ershad, D. and Alizadeh, A. 2004. Three new species of Trichoderma for the mycoflora of Iran. Rostaniha 5(2): 159-170. (in Persian with English abstract)
  49. Zhou, X., De Beer, Z.W., Xie, Y., Pegg, G.S. and Wingfield, M.J. 2007. DNA-based identification of Quambalaria pitereka causing severe leaf blight of Corymbia citriodora in China. Fungal Diversity 25: 245-254.
  50. Zucchi, T.D., De Moraes, L.A.B. and De Melo, I.S. 2008. Streptomyces sp. ASBV-1 reduces aflatoxin accumulation by Aspergillus parasiticus in peanut grains. Journal of Applied Microbiology 105(6): 2153-2160.