بررسی تأثیر باکتری حل کننده فسفر و قارچ میکوریزا بر شاخص‌های رشدی گیاه اسفرزه در شرایط شور

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دکتری مهندسی کشاورزی-زراعت، دانشگاه بیرجند

2 دانشیار گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه بیرجند

3 استاد گروه علوم و مهندسی خاک، دانشکده مهندسی و فناوری کشاورزی، دانشگاه تهران

4 استادیار، مرکز ملی تحقیقات شوری، سازمان تحقیقات، آموزش و ترویج کشاورزی، یزد، ایران

چکیده

بهره­گیری از ریزسازواره­های خاکزی می­تواند بخشی از اثرات منفی تنش شوری را کاهش دهد. به­منظور بررسی اثر شوری، قارچ میکوریزا آربوسکولار و باکتری حل کننده ترکیبات فسفری بر خصوصیات رشدی گیاه دارویی اسفرزه (Plantagoovata Forsk.) دو آزمایش طراحی و اجرا شد. در آزمایش اول به­منظور غربال­گری گونه مقاوم باکتری حل­کننده فسفات در شرایط تنش شوری، 40 باکتری تحت آزمون نیمه کمی توان انحلال فسفات در شرایط شوری محیط کشت قرار گرفتند. برای این ارزیابی میزان نسبی انحلال فسفات، نسبت قطر هاله بر قطر کلنی تعیین گردید. سپس گونه برتر که بالاترین توان حل فسفات معدنی در شوری 60 دسی زیمنس بر متر داشت، انتخاب شد. مقایسه توالی 16S rRNA و آنالیز فیلوژنتیکی نشان داد که سوش جدا شده Pseudomonas fluorescens بود. آزمایش دوم به­صورت فاکتوریل سه عاملی در قالب طرح بلوک­های کامل تصادفی با سه تکرار بود. عامل اول سه سطح شوری شامل 5/2 ، 5 و 10 دسی­زیمنس بر متر، عامل دوم قارچ میکوریزا شامل عدم کاربرد قارچ و گونه­های Funneliformis mosseae، Rhizophagus intraradices و Glomus fasciculatum و عامل سوم شامل دو سطح عدم کاربرد باکتری و کاربرد باکتری برتر حاصل از آزمایش شناسایی باکتری بود. صفات مورد اندازه­گیری شامل وزن خشک ساقه و ریشه، نسبت وزن خشک ریشه به ساقه، پاسخ رشد میکوریزایی و درصد کلونیزاسیون ریشه بود. نتایج تجزیه واریانس نشان داد اثر متقابل تنش شوری و قارچ میکوریزا بر صفات وزن خشک ساقه و ریشه، نسبت وزن خشک ریشه به ساقه، پاسخ رشد میکوریزایی و درصد کلونیزاسیون ریشه و اثر متقابل تنش شوری، قارچ میکوریزا و باکتری بر وزن خشک ساقه در سطح احتمال ۱ درصد معنی­دار بود. همچنین اثر متقابل تنش شوری و باکتری بر نسبت وزن خشک ریشه به ساقه در سطح احتمال ۵ درصد معنی­دار بود. بیشترین وزن خشک ریشه و نسبت وزن خشک ریشه به ساقه در ترکیب تیماری 5/2 دسی زیمنس بر متر و کاربرد قارچ Glomus fasciculatum به­میزان 07/1 گرم در گیاه و 29/0 حاصل شد. بیشترین پاسخ رشد میکوریزایی در ترکیب تیماری شوری 10 دسی زیمنس بر متر + قارچ Rhizophagus intraradices به­میزان 7/76 درصد بود. مقایسه میانگین اثر متقابل تنش شوری و باکتری نشان داد بیشترین پاسخ رشد میکوریزایی در ترکیب تیماری شوری 10 دسی زیمنس بر متر + کاربرد باکتری Pseudomonas fluorescens  به­میزان 6/45 درصد بود و بیشترین کلونیزاسیون ریشه در شوری 10 دسی زیمنس بر متر به­وسیله قارچ میکوریزا Rhizophagus intraradices به­میزان 1/65 درصد حاصل شد. نتایج نشان داد هر چند افزایش شوری توانست مولفه­های رشدی گیاه را کاهش دهد، لکن کاربرد همزمان باکتری حل کننده فسفات معدنی و قارچ میکوریزا توانست اثرات منفی تنش شوری را تا حدی جبران نماید. با توجه به نتایج حاصل از این پژوهش می­توان کاربرد همزمان باکتری Pseudomonas fluorescens و قارچ Rhizophagus intraradices را برای دستیابی به حداکثر تولید گیاه دارویی اسفرزه توصیه نمود.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Phosphate Solubilizing Bacteria and Mycorrhizal Fungi on Growth Parameters of Isabgol in Saline Conditions

نویسندگان [English]

  • A. Dehghanitafti 1
  • S. Mahmoodi 2
  • H. Alikhani 3
  • M. Salehi 4
1 Ph.D of Agronomy, University of Birjand
2 Professor assistant, Department of agronomy and plant breeding, University of Birjand
3 Professor, Department of soil engineering, University of Tehran
4 National Salinity Research Center, Agricultural Research, Education and Extension Organization (AREEO), Yazd, Iran
چکیده [English]

Some beneficial soil microorganisms can reduce salt stress in many crops. Two experiments were carried outto study the effect of salinity and microorganisms on the growth characteristics of Plantago ovata Forsk. In the first experiment, tolerant species of phosphate-soluble bacteria screened in a salinity stress condition, a number of bacteria were subjected to semi-quantitative phosphate solubility test. The superior isolate was identified as Pseudomonas fluorescens based on the sequence 16S rRNA gene and other phylogenetic analysis. The second experiment was a factorial experiment in randomized complete block design with three replications. The first factor was three levels of salinity (2.5, 5 and 10 dS/m), the second factor was mycorrhizal fungus including Funneliformis mosseae, Rhizophagus intraradices and Glomus fasciculatum, and the third factor consisted of two levels of non-bacterial and bacterial application. Shoot and root dry weight, root to shoot dry weight ratio, mycorrhizal growth response and root colonization percentage were measured. Analysis of variance showed that interaction of salinity stress and mycorrhizal fungus on shoot dry weight was significant at level 1% probability. The interaction of salinity stress and bacteria on the ratio of root dry weight to shoot was significant at 5% probability level. The highest root dry weight and root/shoot ratio (1.7 and 0.9 respectively) were obtained at 2.5 dS/m + Glomus fasciculatum treatment. The highest mycorrhizal growth response percentage was 76.7% at 10 dS/m + Rhizophagus intraradice treatment.  Comparison of the mean interactions between salinity stress and bacteria showed that the highest mycorrhizal growth response percentage was obtained in the 10 dS/m salinity + Pseudomonas fluorescens treatment (45.6%). The results also showed that salinity decreased the yield of Isabgol, but the simultaneous application of PSB and AMF could compensate the negative effects of salinity stress. According to the results, it is possible to use the simultaneous application of Pseudomonas fluorescens and Rhizophagus intraradices to maximize the production of Plantago ovata Forsk.

کلیدواژه‌ها [English]

  • Isabgol
  • Shoot dry weight
  • Root dry weight
  • Root to shoot dry weight
  • Mycorrhizal growth response
  • Root colonization
  1. بقالیان، ک. 1387. اثر رطوبت خاک و هوا بر کمیت و کیفیت موسیلاژ اسفرزه. پایانامه کارشناسی ارشد باغبانی، دانشگاه تهران، ایران.
  2. زرگری، ع. 1375. گیاهان دارویی. موسسه انتشارات و چاپ دانشگاه تهران. چاپ ششم. ص 205-194.
  3. صفر نژاد، ع.، سلامی، م.، و حمیدی، ح. 1386. بررسی خصوصیات مورفولوژی گیاهان دارویی اسفرزه
     (Plantago ovata و Plantago psyllium) در برابر تنش شوری. پژوهش و سازندگی در منابع طبیعی. 75: 160-152.
  4. فضائلی، ع.، بشارتی، ح.، و پیرولی بیرانوند، ن. 1389. تأثیر شوری بر کارایی همزیستی سینوریزوبیوم ملیلوتی با ارقام مختلف یونجه. مجله پژوهش­های خاک (علوم خاک و آب). 24(3): 253-263.
  5. قاسمی، ک.، فلاح، ک.، رییسی، س.، و حیدری، ف. 1392. اثر کودهای اوره و زیستی بر عملکرد کمی و کیفی گیاه دارویی اسفرزه (Plantago ovata Frosk). مجله پژوهش‌های تولید گیاهی. 20(4): 116-101.
  6. معصومی زواریان، ا.، یوسفی راد، م.، و اصغری، م. 1394. بررسی اثرات قارچ میکوریزا بر روی خصوصیات کمی و کیفی گیاه دارویی انیسون (Pimpinella anisum) تحت تنش شوری. فصلنامه علمی پژوهشی گیاهان دارویی. 4(56): 148-139.
  7. نقدی بادی، ح.، دست پاک، آ.، و ضیایی، س. ع. 1382. مروری بر گیاه اسفرزه (Plantago ovata Forsk. و Plantago Psyllium.) .فصلنامه گیاهان دارویی. 1(9): 17-1.
  8. Abrol, I. P., Yadav, J. S. P., and Massoud, F. I. 1988. Salt-affected soils and their management (No. 39). Food and Agriculture Org.
  9. Baon, J. B., Smith, S. E., and Alston, A. M. 1993. Mycorrhizal responses of barley cultivars differing in P efficiency. Plant and Soil, 157(1): 97-105.
  10. Brindha, K., and Elango, L. 2012. Impact of tanning industries on groundwater quality near a metropolitan city in India. Water Resource Management, 26(6), 1747-1761.
  11. Chakraborty, M. K., and Patel, K. V. 1992. Chemical Composition of Isabgol (Plantago ovata Forsk.). Seed Journal and Food Science. 29: 389-390.
  12. Dermarderosian, A. 2001. The review of natural production. Facts and comparision. Awalters Kluwer Company. (pp. 473-476). USA.
  13. Ehsan, M., Ahmed, I., Hayat, R., Iqbal, M., Bibi, N., and Khalid, N. 2016. Molecular Identification and Characterization of Phosphate Solubilizing Pseudomonas sp. Isolated from Rhizosphere of Mash Bean (Vigna Mungo L.) for Growth Promotion in Wheat. Journal of Agricultural Science and Technology, 18(3): 775-788.
  14. Essahibi, A., Benhiba, L., Oussouf, F. M., Babram, M. A., Ghoulam, C., and Qaddoury, A. 2017. Improved rooting capacity and hardening efficiency of carob (Ceratonia siliqua L.) cuttings using arbuscular mycorrhizal fungi. Archives of Biological Sciences, 69(2): 291-298.
  15. Fahad, S., Hussain, S., Matloob, A., Khan, F. A., Khaliq, A., Saud, S and Faiq, M. 2015. Phytohormones and plant responses to salinity stress: a review. Plant Growth Regulation, 75(2): 391-404.
  16. Garbaye, J. 1994. Mycorrhization helper bacteria: a new dimension to the mycorrhizal symbiosis [interaction, specificity]. Acta Botanica Gallica (France).
  17. Guissou, T., Babana, A. H., Sanon, K. B., and Ba, A. M. 2016. Effects of arbuscular mycorrhizae on growth and mineral nutrition of greenhouse propagated fruit trees from diverse geographic provenances. BASE.
  18. Haneef, I., Faizan, S., Perveen, R., and Kausar, S. 2014. Impact of bio-fertilizers and different levels of cadmium on the growth, biochemical contents and lipid peroxidation of Plantago ovata Forsk. Saudi Journal of Biological Sciences, 21(4): 305-310.
  19. Hernández, J. A., Barba-Espín, G., Clemente-Moreno, M. J., and Díaz-Vivancos, P. 2017. Plant Responses to Salinity Through an Antioxidative Metabolism and Proteomic Point of View. In Stress Signaling in Plants: Genomics and Proteomics Perspective, Volume 2, (pp. 173-200). Springer International Publishing.
  20. Hetrick, B. A. D., Wilson, G. W. T., and Cox, T. S. 1992. Mycorrhizal dependence of modern wheat varieties, landrace, and ancestors. Canadian Journal of Botany, 70(10), 2032-2040.
  21. Izadi-Darbandi, E., and Mehdikhani, H. 2018. Salinity effect on some of the morphophysiological traits of three plantago species (Plantago spp.) Scienntia Horticulturae. 236, 43-51.
  22. Jaleel, C. A., Manivannan, P., Sankar, B., Kishorekumar, A., Gopi, R., Somasundaram, R., and Panneerselvam, R. 2007. Pseudomonas fluorescens enhances biomass yield and ajmalicine production in Catharanthus roseus under water deficit stress. Colloids and Surfaces B: Biointerfaces, 60(1): 7-11.
  23. Kumar, V., Singh Solanki, A., and Sharma, S. 2011. AM Fungi and A. chroococcum affecting yield, nutrient uptake and cost efficacy of isabgoal (Plantago ovata) in indian arid region. Thai Journal of Agricultural Science, 44: 53-60.
  24. Madueno, L., Coppootelli, B.M., Alvarez, H.M. and Morelli, I.S. 2011. Isolation and characterization of indigenous soil bacteria for bioaugmentation of PAH contaminated soil of semiarid Patagonia, Argentina. International Biodeterioration and Biodegradation. 65: 345-351.
  25. Merchan, F., Breda, C., Hormaeche, J. P., Sousa, C., Kondorosi, A., Aguilar, O. M., and Crespi, M. 2003. A Krüppel-like transcription factor gene is involved in salt stress responses in Medicago spp. Plant and Soil, 257(1): 1-9.
  26. Milošević, N. A., Marinković, J. B., and Tintor, B. B. 2012. Mitigating abiotic stress in crop plants by microorganisms. Zbornik Matice srpske za prirodne nauke, 123: 17-26.
  27. Nadeem, S. M., Ahmad, M., Zahir, Z. A., Javaid, A., and Ashraf, M. 2014. The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnology Advances, 32(2): 429-448.
  28. Negrão, S., Schmöckel, S. M., and Tester, M. 2017. Evaluating physiological responses of plants to salinity stress. Annals of Botany, 119(1): 1-11
  29. Pandey, R., and Garg, N. 2017. High effectiveness of Rhizophagus irregularis is linked to superior modulation of antioxidant defence mechanisms in Cajanus cajan (L.) Millsp. genotypes grown under salinity stress. Mycorrhiza, 1-14.
  30. Parihar, P., Singh, S., Singh, R., Singh, V. P., and Prasad, S. M. 2015. Effect of salinity stress on plants and its tolerance strategies: a review. Environmental Science and Pollution Research, 22(6): 4056.
  31. Pathak, D., Lone, R., and Koul, K. K. 2017. Arbuscular Mycorrhizal Fungi (AMF) and Plant Growth-Promoting Rhizobacteria (PGPR) Association in Potato (Solanum tuberosum L.): A Brief Review. In Probiotics and Plant Health (pp. 401-420). Springer Singapore.
  32. Paterson, E., Sim, A., Davidson, J., and Daniell, T. J. 2016. Arbuscular mycorrhizal hyphae promote priming of native soil organic matter mineralisation. Plant and Soil, 408(1-2): 243-254.
  33. Porras-Soriano, A., Soriano-Martín, M. L., Porras-Piedra, A., and Azcón, R. 2009. Arbuscular mycorrhizal fungi increased growth, nutrient uptake and tolerance to salinity in olive trees under nursery conditions. Journal of Plant Physiology, 166(13): 1350-1359.
  34. Rfaki, A., Nassiri, L., and Ibijbijen, J. 2015. Isolation and Characterization of phosphate solubilizing bacteria from the rhizosphere of faba bean (Vicia faba L.) in Meknes Region, Morocco. British Microbiology Research Journal, 6(5): 247.
  35. Sabannavar, S. J., and Lakshman, H. C. 2008. Interactions between Azotobacter, Pseudomonas and Arbuscular Mycorrhizal Fungi on Two Varieties of Sesamum indicum L. Journal of Agronomy and Crop Science, 194(6): 470-478.
  36. Saxena, B., Shukla, K., and Giri, B. 2017. Arbuscular Mycorrhizal Fungi and Tolerance of Salt Stress in Plants. In Arbuscular Mycorrhizas and Stress Tolerance of Plants (pp. 67-97). Springer Singapore.
  37. Scagel, C. F., Bryla, D. R., and Lee, J. 2017. Salt exclusion and mycorrhizal symbiosis increase tolerance to NaCl and CaCl2 salinity in ‘Siam Queen’basil. HortScience, 52(2): 278-287.
  38. Selvaraj, T., and Chellappan, P. 2006. Arbuscular mycorrhizae: a diverse personality. Journal of Central European Agriculture, 7(2): 349-358.
  39. Shannon, M. C., and Grieve, C. M. 1998. Tolerance of vegetable crops to salinity. Scientia Horticulturae, 78(1): 5-38.
  40. Shivakumar, S., and Bhaktavatchalu, S. 2017. Role of Plant Growth-Promoting Rhizobacteria (PGPR) in the Improvement of Vegetable Crop Production under Stress Conditions. In Microbial Strategies for Vegetable Production (pp. 81-97). Springer International Publishing.
  41. Singh, S. R., Joshi, D., Tripathi, N., Singh, P., and Srivastava, T. K. 2017. Plant Growth-Promoting Bacteria: An Emerging Tool for Sustainable Crop Production under Salt Stress. In Bioremediation of Salt Affected Soils: An Indian Perspective (pp. 101-131). Springer International Publishing.
  42. Sperber, J. I. 1958. The incidence of apatite-solubilizing organisms in the rhizosphere and soil. Australian Journal of Agricultural Research, 9(6): 778-781.
  43. Trapet, P., Avoscan, L., Klinguer, A., Pateyron, S., Citerne, S., Chervin, C., and Besson-Bard, A. 2016. The Pseudomonas fluorescens siderophore pyoverdine weakens Arabidopsis thaliana defense in favour of growth in iron-deficient conditions. Plant Physiology, pp 1537.
  44. Tomar, O. S., Minhas, P. S., and Dagar, J. C. 2005. Isabgol (Plantago ovata Forsk): A Potential Crop For Saline Irrigation And Moderate Alkali Soils.
  45. Visen, A., Bohra, M., Singh, P. N., Srivastava, P. C., Kumar, S., Sharma, A. K., and Chakraborty, B. 2017. Two pseudomonad strains facilitate AMF mycorrhization of litchi (Litchi chinensis Sonn.) and improving phosphorus uptake. Rhizosphere, 3: 196-202.
  46. Vyas, P., Rahi, P., and Gulati, A. 2009. Stress tolerance and genetic variability of phosphate-solubilizing Pseudomonas fluorescent from the cold deserts of the trans-Himalayas. Microbial Ecology, 58(2): 425-434.
  47. Wang, X., Pan, Q., Chen, F., Yan, X., and Liao, H. 2011. Effects of co-inoculation with arbuscular mycorrhizal fungi and rhizobia on soybean growth as related to root architecture and availability of N and P. Mycorrhiza, 21(3): 173-181.
  48. Zhang, H., Wu, X., Li, G., and Qin, P. 2011. Interactions between arbuscular mycorrhizal fungi and phosphate-solubilizing fungus (Mortierella sp.) and their effects on Kostelelzkya virginica growth and enzyme activities of rhizosphere and bulk soils at different salinities. Biology and Fertility of Soils, 47(5): 543.