بررسی تأثیر کشت چمن و کودهای زیستی بر برخی ویژگی‌های کیفی خاک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی ارشد علوم و مهندسی خاک، بیولوژی و بیوتکنولوژی خاک، دانشکده کشاورزی، دانشگاه زنجان

2 استادیار گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه زنجان

3 استاد گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه زنجان

چکیده

نوع پوشش گیاهی، بر برخی ویژگی­های خاک مانند جرم مخصوص ظاهری، قابلیت جذب عناصر غذایی و کربن آلی خاک تأثیرگذار است. نوع مدیریت تغذیه چمن نیز عامل مهمی در نوع تأثیر چمن بر خاک زیرین آن می­باشد. استفاده از کودهای زیستی در تغذیه چمن که هم­زمان قادر به بهبود ویژگی­های کیفی خاک و افزایش رشد چمن و باشد و از طرف دیگر تأثیر زیان­بار بر محیط زیست نداشته باشد، نقش قابل توجهی در حفظ محیط زیست دارد. هدف از این پژوهش بررسی تأثیر کود اوره و کود زیستی محتوی باکتری تثبیت کننده نیتروژن (Pantoea agglomerans) بر کیفیت خاک زیر چمن بود. آزمایش در قالب طرح کاملاً تصادفی به روش گلدانی و در گلخانه با 5 تیمار 1- خاک بایر (Br)، 2-کشت چمن رقم اسپیدی گرین به روش متعارف (Gr)، 3-کشت چمن + اوره (GrU)، 4-کشت چمن + کود زیستی محتوی باکتریPantoea agglomerans (GrPA) و 5- کشت چمن + کود محتوی  Pantoea agglomerans+ کود محتوی باکتری­های محرک رشد (GrPP) و سه تکرار انجام شد. وزن تر چمن همراه با برخی ویژگی­های خاک مورد بررسی قرار گرفت. نتایج این پژوهش نشان داد که کشت چمن و کاربرد کود زیستی محتوی باکتری Pantoea agglomerans در تیمار چهار سبب تشکیل خاکدانه­های بزرگتری نسبت به تیمار خاک بایر شد اما روی پایداری خاکدانه­ها در روش الک تر تأثیر معنی­دار نداشت. کودهای زیستی و کود اوره باعث چمن شدند. کشت چمن به تنهایی در خاک سبب افزایش غلظت کربن آلی خاک، نیتروژن کل، فسفر و پتاسیم قابل جذب در خاک شد اما تأثیر کودهای زیستی معنی­دار نبود. بیشترین مقدار نیتروژن کل و کربن آلی خاک، در تیمار کود اوره دیده شد. به طور کلی بر اساس نتایج این پژوهش می­توان کاربرد کودهای زیستی را حداقل در شرایط این پژوهش به عنوان بخشی از برنامه تغذیه چمن در افزایش رشد آن و بهبود برخی ویژگی­های خاک توصیه نمود.

کلیدواژه‌ها


عنوان مقاله [English]

Effects of lawn plant and biofertilizers on some quality characteristics of soil

نویسندگان [English]

  • nadia emami 1
  • Akbar Hassani 2
  • Alireza Vaezi 3
  • mohammad Babaakbari sari 2
1 M.Sc. graduate, Soil Sci. Dept., Faculty of Agriculture, Univ. of Zanjan, Iran
2 Assist. Professor., Soil Sci. Dept., Faculty of Agriculture, Univ. of Zanjan, Iran
3 Professor., Soil Sci. Dept., Faculty of Agriculture, Univ. of Zanjan, Iran
چکیده [English]

Vegetation type changes some soil properties such as bulk density, nutrient absorption and soil organic carbon. Nutrition management of lawn plant is an important factor which affects soil properties in lower layers. The application of biofertilizers enhance the quality of soil and enhance the growth of lawn plant and in addition they are ecofriendly. The purpose of this study was to investigate the effect of urea and biofertilizer containing nitrogen-fixing bacteria (Pantoea agglomerans) on some quality characteristics of soil under lawn plant cultivation. This experiment was conducted in a completely randomized design in a greenhouse condition with three replications. Treatments include: 1-Control (Br), 2- lawn plant cultivation (Speedy Green) by conventional method (Gr), 3- lawn plant + urea (GrU), 4- lawn plant + bio-fertilizer containing Pantoea agglomerans (GrPA), and 5- lawn plant + Pantoea agglomerans + growth promoting bacteria (GrPP). The fresh weight of lawn plant was measured along with some soil properties. The results showed that lawn plant and application of biofertilizer containing Pantoea agglomerans shaped larger soil aggregates than control but they had no significant effect on aggregate stability. Biofertilizers and urea increased the growth of lawn plant. Cultivation of lawn plant increased soil organic carbon, total nitrogen, phosphorus and potassium uptake, but the effect of biofertilizers was not significant. The highest amount of total nitrogen and soil organic carbon observed in urea fertilizer treatment. In general, the use of biofertilizers in lawn plant cultivation is recommended.

کلیدواژه‌ها [English]

  • Aggregate stability
  • Soil Nitrogen
  • Soil organic carbon
  1. اسدیان، م.، س. م. حجتی، م.ر. پورمجیدیان و ا. فلاح. 1392. تأثیر انواع مختلف کاربری اراضی روی کیفیت خاک در جنگل الندان ساری. پژوهش­های جغرافیای طبیعی. جلد 45، شماره3. ص. 65-76.
  2. حیدری، لادن.، ح. بیات، ع. ا. صفری سنجانی و ج. حمزه­ئی. 1397. تأثیر باکتری همزیست نخود و قارچ مایکوریزا گونه (Glomus mossea ) بر روی برخی از خواص فیزیکی و مکانیکی خاک. پایان نامه کارشناسی ارشد. دانشگاه بوعلی سینا،دانشکده کشاورزی.
  3. سرچشمه‌پور،م.، م. حجازی، و.ر. جلالی و ف. مولایی. .1395. مروری برشاخص‌های کیفیت، سلامت و امنیت خاک. دومین همایش ملی مدیریت پایداری منابع خاک و محیط زیست. 17.18. دانشکده شهید باهنر کرمان.
  4. فلاح نصرت آباد، ع.، ن. صالح راستین و ک. خاوازی. 1378. بررسی کارآئی باکتری­های سیلیکاتی در افزایش پتاسیم قابل جذب برای گیاه ذرت. مجله علوم خاک و آب. جلد 13، شماره 2. ص. 120-131.
  5. محمودی، ف. و م. شکل آبادی. 1396. سلسله مراتب خاکدانه­سازی در خاک‌های تیمار شده با بیوچار. پایان نامه کارشناسی ارشد. دانشگاه بوعلی سینا،دانشکده کشاورزی.
  6. نصیری مقدم، ص.، ا. گلچین و م.ا. دلاور. 1390. تأثیر مواد آلی تازه، کمپوست و ورمی کمپوست‌شده بر خصوصیّات فیزیکوشیمیایی خاک. پایان نامه کارشناسی ارشد. دانشگاه زنجان،دانشکده کشاورزی.
  7. وحدت خواه، م.، م. ه. فرپور و م. سرچشمه پور. 1392. مقایسه برخی از شاخص‌های کیفیت خاک در انواع کاربری پوشش‌های اراضی دشت ماهان- جوپار. مجله علوم آب و خاک. جلد 17، شماره 64. ص. 107-117.
  8. Acosta-Martinez, V., Reicher, Z., Bischoff, M. and Turco, R. 1999. The role of tree leaf mulch and nitrogen fertilizer on turfgrass soil quality. Biology and Fertility of soils 29: 55-61.
  9. Askari, M.S. and Holden, N.M. 2014. Indices for quantitative evaluation of soil quality under grassland management. Geoderma 230: 131-142.
  10. Bernal, P., Allsopp, L.P., Filloux, A. and Llamas, M.A. 2017. The Pseudomonas putida T6SS is a plant warden against phytopathogens. The ISME journal 11: 972.
  11. Braun, R. and Bremer, D. 2017. Nitrous Oxide Emissions and Carbon Sequestration in Turfgrass: Effects of Irrigation and Nitrogen Fertilization (Year 2). Kansas Agricultural Experiment Station Research Reports 3: 10-10.
  12. Dutkiewicz, J., Mackiewicz, B., Lemieszek, M.K., Golec, M. and Milanowski, J. 2015. Pantoea agglomerans: a mysterious bacterium of evil and good. Part I. Deleterious effects: Dust-borne endotoxins and allergens–focus on cotton dust. Ann Agric Environ Med 22: 576-588.
  13. Feng, Y., Shen, D. and Song, W. 2006. Rice endophyte Pantoea agglomerans YS19 promotes host plant growth and affects allocations of host photosynthates. Journal of applied microbiology 100: 938-945.
  14. Gross, C.M., Angle, J. and Welterlen, M. 1990. Nutrient and sediment losses from turfgrass. Journal of Environmental Quality 19: 663-668.
  15. Jacobson, C.B., Pasternak, J. and Glick, B.R. 1994. Partial purification and characterization of 1-aminocyclopropane-1-carboxylate deaminase from the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Canadian journal of microbiology 40: 1019-1025.
  16. Kay, B.D. 2000. Soil Structure, in: Sumner, E.M. (Ed.), Handbook of Soil Science. CRC Press, USA: F.I., Boca Raton, pp. A229-A264.
  17. Laheurte, F. and Berthelin, J. 1988. Effect of a phosphate solubilizing bacteria on maize growth and root exudation over four levels of labile phosphorus. Plant and Soil 105(1): 11-17.
  18. Mahdi, S.S., Hassan, G.I., Samoon, S.A., Rather, H.A., Dar, S.A. and Zehra, B. 2010. Bio-fertilizers in organic agriculture. Journal of Phytology 2(10): 42-54.
  19. McKenzie, N., Coughlan, K. and Cresswell, H. 2002. Soil physical measurement and interpretation for land evaluation. Csiro Publishing.
  20. Nelson, D.W. and Sommers, L. 1974. A rapid and accurate procedure for estimation of organic carbon in soils, Proceedings of the Indiana Academy of Science, pp. 456-462.
  21. Patten, C.L. and Glick, B.R. 2002. Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Applied and environmental microbiology 68: 3795-3801.
  22. Potrikus, C. and Breznak, J.A. 1977. Nitrogen-fixing Enterobacter agglomerans isolated from guts of wood-eating termites. Applied and environmental microbiology 33: 392-399.
  23. Potter, D.A., Powell, A.J. and Scott Smith, M. 1990. Degradation of turfgrass thatch by earthworms (Oligochaeta: Lumbricidae) and other soil invertebrates. Journal of economic entomology 83: 205-211.
  24. Qian, Y., Bandaranayake, W., Parton, W., Mecham, B., Harivandi, M. and Mosier, A. 2003. Long-term effects of clipping and nitrogen management in turfgrass on soil organic carbon and nitrogen dynamics. Journal of Environmental Quality 32: 1694-1700.
  25. Schuman, G., Stanley, M. and Knudsen, D. 1973. Automated total nitrogen analysis of soil and plant samples 1. Soil Science Society of America Journal 37: 480-481.
  26. Shen, J., Yuan, L., Zhang, J., Li, H., Bai, Z., Chen, X., Zhang, W. and Zhang, F. 2011. Phosphorus dynamics: from soil to plant. Plant physiology, 156(3): 997-1005
  27. Sims, P.L. and Singh, J. 1978. The structure and function of ten western North American grasslands: III. Net primary production, turnover and efficiencies of energy capture and water use. The Journal of Ecology: 573-597.
  28. Smith, J., Paul, E., Bollag, J. and Stotzky, G. 1990. The significance of soil microbial biomass estimations. Soil biochemistry 6: 357-396.
  29. Sparks, D.L., Helmke, P. and Page, A. 1996. Methods of soil analysis: Chemical methods. SSSA.
  30. Stockwell, V., Johnson, K., Sugar, D. and Loper, J. 2002. Antibiosis contributes to biological control of fire blight by Pantoea agglomerans strain Eh252 in orchards. Phytopathology 92: 1202-1209.
  31. Townsend Small, A. and Czimczik, C.I. 2010. Carbon sequestration and greenhouse gas emissions in urban turf. Geophysical Research Letters 37.