بررسی تأثیر همزیستی میکوریزی بر خصوصیات رشدی و کلنیزاسیون پایه‌های متداول بادام در شرایط مطلوب و تنش کم آبی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار پژوهش، بخش تحقیقات خاک و آب، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان چهارمحال و بختیاری، سازمان تحقیقات، آموزش و ترویج کشاورزی، شهرکرد، ایران

2 دانشیار موسسه تحقیقات خاک و آب، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

چکیده

خشکی از جمله تنش­های محیطی مهم است که بر رشد و نمو گیاهان اثر منفی می­گذارد. قارچ­های میکوریز آربسکولار در فراهم کردن آب و جذب مواد غذایی و افزایش تحمل به خشکی گیاهان به نفع میزبان خود عمل می­کنند. در این پژوهش اثر قارچ­های میکوریزی بر صفات رشدی و مقاومت به تنش کم آبی در پایه­های متداول بادام در آزمایشی    به­صورت فاکتوریل در قالب طرح آماری بلوک­های کامل تصادفی در سه تکرار در مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی شهرکرد مورد بررسی قرار گرفت. فاکتور­های این تحقیق شامل فاکتور اول، قارچ میکوریز در دو سطح شامل :M0 بدون مصرف قارچ میکوریزی به­عنوان شاهد و :M1 مصرف قارچ میکوریزی، فاکتور دوم پایه بادام در چهار سطح (GN، GF، محلی شوراب 2 و تلخ) و فاکتور سوم تنش کم آبی در چهار سطح (I1: بدون تنش به­عنوان شاهد، I2: 20 درصد، I3: 40 درصد و I4: 60 درصد تخلیه رطوبت قابل استفاده گیاه بودند. نتایج نشان داد بین چهار پایه مورد آزمایش اختلاف معنی­داری بین صفات مورد بررسی وجود داشت. حداکثر مقادیر این صفات از پایه GF حاصل شد. تیمار تنش کم آبی منجر به تفاوت معنی­دار در صفات مورد بررسی شد. با افزایش تنش کم آبی از تیمار بدون تنش I1)) به تیمار حداکثر تنش (I4)، میزان کلنیزاسیون و وزن خشک ریشه کاهش یافت. تلقیح قارچ­های میکوریزی     به­ترتیب منجر به افزایش 27 و 40 درصدی وزن خشک و کلنیزاسیون ریشه شد. بیشترین میزان رشد طولی درخت، رشد قطری ساقه، وزن خشک اندام هوایی به ترتیب به میزان 1/55، 1/5 سانتیمتر و 71 گرم از تیمار ترکیبی GF+I1 بدست آمد. حداکثر میزان کلنیزاسیون ریشه از تیمار ترکیبیI1+ M1  به میزان 5/74 درصد بدست آمد. بر اساس نتایج این پژوهش با تلقیح قارچ­های میکوریزی، صفات رشدی افزایش و اثرات منفی تنش کم آبی کاهش یافتند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of mychorhizal symbiosis on growth properties and colonization of common Almond rootstock at water deficit conditions

نویسندگان [English]

  • Mahmoud Mohammadi Eshkaftaki 1
  • Farhad Rejali 2
1 Assistant Professor, Chaharmahal and Bakhtiari Agricultural and Natural Resources Research and Education Center; Agricultural Research, Education and Extension Organization, Shahrekord, Iran
2 Associate Professor, Soil and Water Research Institute, Agricultural Research, Education, and Extension Organization, Karaj, Iran
چکیده [English]

Drought is one of the most important environmental stresses that adversely affect the plant growth and crop production. Arbuscular mycorrhizae fungi help their host by absorption of water and mineral nutrition. In order to evaluate mycorrhizal fungus and water deficit stress on growth characteristics, chlorophyll content and root colonization percentage of almond (Prunus amygdalus) rootstock, a completely randomized design with factorial arrangement was conducted with three replications in agricultural and natural research center of Shahrekoard. The treatments consist of two levels of mycorrhizal fungus (with (M1) and without (M0) mycorrhizal fungus), four types of rootstock (bitter, local Shorab 2, GF and GN) and four levels of water deficit stresses (Control (I0), slight (I1), moderate (I2) and severe (I3)). The results revealed that the rootstock types had significant effects on studied parameters and the maximum measured parameters was observed in GF rootstock treatment. Water deficit stress also had significant effects on examined parameters. With increasing water deficit stress, root colonization percentage and root dry weight decreased significantly. Mycorrhizae fungi treatments increased root dry weight and root colonization percentage 27 and 40 percent respectively. The maximum stem length, stem diameter and plant dry weight were observed in GF +I1 treatment. The highest amount of root colonization percentage (74.5 %) was achieved in I1 + M1 treatment. Therefore, based on the results, the mycorrhizal fungus increased the growth properties of almond rootstock and reduced the harmful effects of water deficit stress.

کلیدواژه‌ها [English]

  • Almond (Prunus amygdalus)
  • Drought stress
  • Root Colonization
  • Chlorophyll
  1. آقابابائی، ف.، رئیسی، ف.، و نادیان، ح. 1390. اثر همزیستی میکوریزایی بر میزان کلروفیل، فتوسنتز و راندمان مصرف آب در چهار ژنوتیپ بادام در استان چهارمحال و بختیاری. 56: 101-91.
  2. امامی، ع. 1375. روش‌های تجزیه گیاه .جلد اول. موسسه تحقیقات آب و خاک. نشریه شماره
  3. باقری، و.، شمشیری، م.ح.، شیرانی، ح.، و روستا، ح. 1390. اثر قارچ میکوریز­آربسکولار و تنش خشکی بر رشد، روابط آبی، تجمع پرولین و قندهای محلول در نهال­های دو رقم پایه­ای پسته اهلی (Pistacia vera). مجله علوم باغبانی ایران، 42(4): 377-365.
  4. بهرامی­نژاد، م.، ا. صداقتی، م.ح. شمشیری و ا. بهرامی­ نژاد. 1393 . بررسی نقش همزیستی میکوریزایی در افزایش مقاومت به خشکی دو پایه تجاری بادام. اولین همایش یافته های نوین در محیط زیست و اکوسیستم های کشاورزی. تهران، ایران. Agro congress.ir
  5. پیمانه، ز.، و زارعی، م. 1392. اثر قارچ­های میکوریز آربسکولار بر رشد و جذب عناصر غذایی پایه نارنج در شرایط کم آبی. مجله زیست­شناسی خاک، 1: 24-13.
  6. تهرانی­فر، ع.، کافی م. و عدلی م. 1383. پرورش بادام . انتشارات جهاد دانشگاهی مشهد. 31 صفحه.
  7. رجالی، ف. 1396. آشنایی با قارچ­های میکوریزی و کاربرد آن در اکوسیستمهای مختلف. سازمان تحقیقات و آموزش کشاورزی، موسسه تحقیقات خاک و آب. 154 صفحه.
  8. زارعی، م.، پیمانه، ز.، رونقی، ع .ا.، کامکار حقیقی، ع.ا.، و شهسوار، ع. ر.1392. اثر قارچ مایکوریز آربوسکولاربررشد و پارامتر های فیزیولوژیک پایه رافلمون در شرایط تنش کم آبی. نشریه آب و خاک ) علوم و صنایع کشاورزی (، .3 :485-49.
  9. صالحی، ف. 1385. نشریه فنی قارچ ریشه و کاربرد آن در کشاورزی. انتشارات موسسه تحقیقات پسته کشور. 16 صفحه.
  10. عزیزی، ص.، طبری کوچکسرایی، م.، هادیان، ج.، فلاح نصرت آبادی، ع.، و مدرس ثانوی، س.ع.م. 1398. پاسخ فیزیولوژیک نهال مورد (Myrtus communis L) به تلقیح با میکروارگانیسمها در شرایط تنش کم آبی نشریه زیست­شناسی: 7(2): 181-167.
  11. علیزاده، 1. 1394. رابطه آب و حاک و گیاه. انتشارات دانشگاه فردوسی مشهد. چاپ چهارم، 472 صفحه.
  12. مرادی، م.، اثنی عشری، م. و ارشادی، ا. 1398. ارزیابی برخی از پاسخ­های فیزیولوژیکی پایه­های پیوند شده و غیر پیوندی بادام به تنش خشکی. علوم باغبانی ایران. 5 (2): 323-311.
  13. Amiri, R., Nikbakht, A., Rahimmalek, M. and Hosseini, H. 2017. Variation in theessential oil composition, antioxidant capacity, and physiological characteristics ofPelargonium graveolens inoculated with two species of mycorrhizal fungi under water deficit conditions. Journal of Plant Growth Regulation 58(1): 1-14
  14. Bárzana, G., Aroca, R., and Ruiz-Lozano, J.M. 2015. Localized and nonlocalized effects ofarbuscular mycorrhizal symbiosis on accumulation of osmolytes and aquaporins and on antioxidant systems in maize plants subjected to total or partial root drying. Plant Cell Environment 38:1613–1627.
  15. Berta, G., Trotta, A., Fusconi, A., Hooker, J., Munro, M., Atkinson, D., Giovannetti, M., and Morini, S. 1995. Arbuscular mycorrhizal induced changes to plant growth and root system morphology. Tree Physiol. 15: 281-293.
  16. Brundrett, M., Bougher, N., Dell, B., Grove, T. and Malajczuk, N. 1996 .Working withmycorrhizas in forestry and agriculture. Australian centre for international agricultural research, Canberra. Pp 374.
  17. Calvet, C., Estan, V., Camprub, A., Hernandez-Dorrego, A. Pinochet, J., and Moreno, M.A. 2004. Aptitude for mycorrhizal root colonization in Prunus rootstocks. Scientia Horticulturae, 100:39–49.
  18. Cavallazzi, J.R.P., O.K. Filho, S.L. Stürmer, P.T. Rygiewicz, M. M. de Mendonça. 2007. Screening and Selecting Arbuscular Mycorrhizal Fungi Forinoculating Micropropagated Apple Rootstocks in Acid Soils. Plant Cell Tiss. Organ Cult, 90:117–129.
  19. Flexas, J., Barón, M., Bota, J., Ducruet, J. M., Gallé, A., Galmés, J., Jiménez, M. Pou, A., Ribas-Carbó, M., ajnani, C., Tomàs M., and Medrano, H.. 2009. Photosynthesis limitations during water stress acclimation and recovery in the drought-adapted Vitis hybrid Richter-110 (V. berlandierixV. rupestris). J. Exp. Bot, 60:2361-2377.
  20. Ghollarata, M. and Raiesi, F. 2007. The adverse effects of soil salinization on the growth of Trifolium alexandrinum and associated microbial and biochemical properties in a soil from Iran. Soil Biology and Biochemistry, 39(7): 1699-1702.
  21. Haghighatnia H., Nadian, H.A., and Rejali, F. 2011. Effects of mycorrhizal colonization on growth, nutrients uptake and some other characteristics of Citrus volkameriana rootstock under drought stress. World Applied Sciences Journal, 13 (5):1077-1084.
  22. Hosseini, A., and Gharaghani, A. 2015. Effects of Arbuscular Mycorrhizal Fungi on Growth and Nutrient Uptake of Apple Rootstocks in Calcareous Soil. International Journal of Horticultural Science and Technology, 2 (2): 173-185.
  23. Kafkas, S., and Ibrahim, O. 2009. Various mycorrhizal fungi enhance dry weights, P and Zn uptake of four Pistacia species. Plant Nutrition, 32: 146-159.
  24. Karimi, S., Yadollahi, A., and Arzani, K. 2013. Responses of almond genotypes to osmotic stress induced in vitro. Journal of Nuts, 4(4): 1 -7.
  25. Kormanik, P. P., and McGraw, A. C. 1982. Quantification of vesicular-arbuscular mycorrhizae in plant roots. IN: Methods and principles of mycorrhizal research (N. C. Schenck, Ed.), pp. 37-47. The American Phytopathological Society, St. Paul, Minn.
  26. Lee, B. R., Muneer, S. J. Avice, C., Jung, W. J. and Kim, T. H. 2012. Mycorrhizal colonisation and P-supplement effects on N uptake and N assimilation in perennial ryegrass under well-watered and drought-stressed conditions. Mycorrhiza. 22(7): 525-534.
  27. Mardhiah, U., Caruso, T., Gurnell, A., and Rillig, M. 2016. Arbuscular mycorrhizal fungal hyphae reduce soil erosion by surface water flow in a greenhouse experiment. Applied Soil Ecology, 99:137–140.
  28. Marschner, H., and Dell, B. 1994. Nutrient uptake in mycorrhizal symbiosis. Plant and Soil 159: 89 –
  29. Mo, Y., Wang, Y., Yang, R., Zheng, J., Liu, C., Li, H., Ma, J., Zhang, Y., Wei, C. andZhang, X. 2016. Regulation of Plant Growth, Photosynthesis, Antioxidation and Osmosisby an Arbuscular Mycorrhizal Fungus in Watermelon Seedlings under Well-Watered andDrought Conditions. Frontiers in Plant Science 7: 1-15.
  30. Raiesi, F. and M. Ghollarata. 2006. Interactions between phosphorus availability and an AM fungus (Glomus intraradices) and their effects on soil microbial respiration, biomass and enzyme activities in a calcareous soil. Pedobiologia, 50:413–425.
  31. Rajabpoor, S., Kiani, S., Sorkheh, K., and Tavakoli, F. 2014. Changes induced by osmotic stress in the morphology, biochemistry, physiology, anatomy and stomatal parameters of almond species (Prunus L. spp.) grown in vitro. Forest Research, 25 (3):523-534.
  32. Rincon, A., F. Valladares., T. E. Gimeno and J. J. Pueyo. 2008. Water stress responses of two Mediterranean tree species influenced by native soil microorganisms and inoculation with a plant growth promoting rhizobacterium. Tree Physiology. 28: 1693–1701.
  33. Roldan-Fagardo, B.E., Barea, J. M., Ocampo, J. A. and Azcon-Aguilar, C. 1982. The effect of season on VA mycorrhiza of the almond tree and of phosphate fertilization and species of endophyte on its mycorrhizal dependency. Plant and Soil, 68:361–367.
  34. Rümberg, B.C, Urcelay, C., Shroeder M. A., Vargas-Gil, S. and Luna C.M. 2015. The role of inoculum identity in drought stress mitigation by arbuscular mycorrhizal fungi in soybean. Biology and Fertility of Soils 51(1):1–10.
  35. Shao, H.B., Chu, L.Y., Abdul-Jaleel, C., and.Zhao, C.X. 2008. Water-Deficit Stress-Induced Anatomical Changes in Higher Plants. Compt. Rend. Biol. 331:215-225.
  36. Sardabi, H., Daneshvar, H. A., Rahmani, A., Assareh, M. H. 2005. Responses of cultivated and wild almond to water stress. Acta Hortic. 726, 311–316.
  37. Smith, S. E., and Read, D. J. 2008. Mycorrhizal symbiosis, third ed. Academic Press, London. UK.
  38. Sorkheh, K., Shiran, B., Khodambshi, M., Rouhi, V., and Ercisli, S. 2012. In vitro assay of native Iranian almond species (Prunus spp.) for drought tolerance. Plant Cell, Tissue and Organ Culture, 105(3): 395-404.
  39. Wellburn, A. R. 1994. The spectral determination of chlorophyll a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolutions. Journal of Plant Physiology, 144: 307-313
  40. Wu, Q. S., Srivastava, A.K. and Zou, Y.N. 2013. AMF-induced tolerance to drought stressin citrus: a review. Scientia Horticulturae 164:77–87.
  41. Wu, Q.S. and Xia, R.X. 2006. Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. Journal of Plant Physiology 163(4):417–425.
  42. Yadollahi, A., K. Arzani, A. Ebadi, M. Wirthensohn, and S. Karimi, 2011. The response of different almond genotypes to moderate and severe water stress in order to screen for drought tolerance. Scientia Horticulturae, 129: 403-413
  43. Yin, N., Zhang, Z., Wang, L., and Qian, K. 2016. Variations in organic carbon, aggregation, and enzyme activities of gangue-fly ash-reconstructed soils with sludge andarbuscular mycorrhizal fungi during 6-year reclamation. Environmental Science andPollution Research 23(17): 17840–17849.
  44. Yordanov, I., Velikova, V., and Tsonev, T. 2003. Plant responses to drought and stress tolerance. Plant Physiology, Special Issue, 187-206.
  45. Zamani, Z., Taheri, A., Vezvaei, A. and Poustini. K. Proline content and stomata resistance of almond seedlings affected by irrigation intervals. Acta Hort, 591: 411-416.