بررسی کربن آلی، نیتروژن، فسفر و فعالیت آنزیم‌های پروتئاز و آلکالین فسفاتاز در خاک‌های ساحلی تالاب شادگان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه خاک‌شناسی، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران

2 گروه زراعت و اصلاح نباتات، واحد سنندج، دانشگاه آزاد اسلامی، سنندج، ایران

چکیده

این تحقیق با هدف ارزیابی تغییرات غلظت آنزیم های پروتئاز و آلکالین فسفاتاز، کربن آلی، نیتروژن کل و فسفر کل در دو فصل زمستان و تابستان در خاک­های ساحلی تالاب شادگان در سال 98-1397 انجام شد. در این تحقیق دو منطقه نمونه­برداری شامل منطقهA  تحت پوشش گیاهی غالب و منطقهB  خاک­های مرطوب بدون پوشش گیاهی انتخاب شدند. نمونه­برداری خاک با استفاده از استاندارد ASTM شماره D2488 انجام شد. نتایج تجزیه و تحلیل واریانس داده­ها نشان داد که تغییرات فصلی، پوشش گیاهی و عمق خاک به ترتیب بر مقدار نیتروژن کل، فسفر و فعالیت آنزیم­های پروتئاز و آلکالین فسفاتاز در سطح احتمال یک درصد تأثیر معنی داری داشته است (p <0.001). تغییرات فصلی اثر معنی داری بر مقدار ماده آلی خاک نداشته در صورتی که پوشش گیاهی و عمق خاک به طور معنی داری مقدار کربن آلی خاک در خاک ساحلی تالاب شادگان را تحت تأثیر قرار داده اند (p <0.001). پروفایل عمقی عناصر و آنزیم­های مورد مطالعه با تغییر فصل و پوشش گیاهی به این­صورت بوده که عناصر غذایی و همچنین فعالیت آنزیم­های بیرون سلولی پروتئاز و آلکالین فسفاتاز در خاک­های تحت پوشش گیاهی بیشتر از خاک­های بدون پوشش بوده است. با توجه به نتایج به دست آمده می توان چنین استباط کرد که فعالیت آنزیم های پروتئاز ( µmol/gh69/2) و آلکالین فسفاتاز (mgPNP/gh 05/3) در خاک های سطحی و عمق 15 سانتیمتری در مناطق دارای پوشش گیاهی در فصل تابستان بیشتر بوده که این موضوع ارتباط مستقیم و معنی­دار با نیتروژن کل، فسفر و کربن آلی خاک داشت (p <0.05)، زیرا این عناصر غذایی در عمق 30-0 سانتیمتری خاک منطقه دارای پوشش گیاهی در فصل تابستان مقادیر بیشتری داشتند. در نهایت آنالیز مولفه اصلی و همبستگی اسپیرمن نیز ارتباط قوی و مثبت بین عناصر غذایی نیتروژن کل، فسفر کل و کربن آلی خاک (p <0.001) با فعالیت بیولوژیکی آنزیم های پروتئاز و آلکالین فسفاتاز را تأیید کردند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation of protease and alkaline phosphatase activities, organic carbon, nitrogen and phosphorus of Shadegan coastal soils

نویسندگان [English]

  • Ebtessam Hamid 1
  • Khoshnaz Payandeh 1
  • Mohammad Tahsin Karimi Nezhad 2
  • Naghmeh Saadati 1
1 Department of Soil, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
2 Department of Agriculture and Plant Breeding, Sanandaj Branch, Islamic Azad University, Sanandaj
چکیده [English]

The aim of this study was to evaluate the changes in proteases and alkaline phosphatase activities, organic carbon content, total nitrogen and phosphorus in winter and summer time in the coastal soils of Shadegan wetland in 2019-2020. Two sampling sites including site A with dominant vegetation and site B wetlands without vegetation were selected. Soil samples were colected using ASTM standard number D2488. The results of analysis of variance showed that seasonal changes, vegetation and soil depth had a significant effect on total nitrogen, phosphorus and protease and alkaline phosphatase activity (p < 0.001).
Seasonal changes did not have a significant effect on the amount of soil organic matter, while vegetation and soil depth significantly affected the amount of soil organic carbon in the coastal soil of Shadegan wetland (p < 0.001). Nutrient elements and activity of extracellular enzymes (protease and alkaline phosphatase) in vegetated soils were higher than bare soils. According to the results, the activity of protease (2.69 µmol/gh) and alkaline phosphatase (3.5 mg/PNP/gh) enzymes in topsoil (0-15 cm) with vegetation was higher in summer time compare to the  bare soils. These results  can be related to total nitrogen, phosphorus and soil organic carbon (p < 0.05) which had higher values in the summer time.  Finally, principal component analysis and Spearman correlation  confirmed a strong and positive relationship between total nitrogen, total phosphorus and soil organic carbon (p < 0.001) with the biological activity of protease and alkaline phosphatase enzymes.

کلیدواژه‌ها [English]

  • Protease
  • akaline phosphatase
  • mineral compounds
  • coastal soils
  • shadegan wetland
  1. بهشتی، ع.، رئیسی، ف. و گلچین، ا. 1390. اثرات آشفتگی ناشی از تبدیل اراضی جنگلی به کشاورزی بر برخی شاخص های بیولوژیک کیفیت خاک در اکوسیستم های جنگلی شمال ایران. نشریه بوم شناسی کشاورزی، 3، 453-439.
  2. پرویزی، ی. و رونقی، ع. 1381. تأثیر نیتروژن کل و منگنز بر قابلیت استفاده برخی عناصر غذایی خاک تحت کشت گیاهان مختلف. مجله علوم و فنون کشاورزی و منابع طبیعی، 6 (1)، 103-93.
  3. تمرتاش، ر.، جعفری، م.، حیدری شریف آباد، ح.، زاهدی امیری، ق. و زهتابیان، غ.ر. 1392. تعیین رابطه عناصر تغذیه­ای در برخی گونه­های مرتعی و خاک اکوسیستم­های مرتعی منطقه طالقان. نشریه حفاظت زیست بوم گیاهان، 1 (3)، 30-15.
  4. حسین­پور، ع.ر. 1387. شیمی و حاصلخیزی خاک. انتشارات دانشگاه پیام نور، 220 صفحه.
  5. خلفه نیل ساز، م.، اسماعیلی، ف.، سبز علیزاده، س.، اسکندری، غ.ر.، انصاری، ه. و آلبوعبید، ص. 1395. پایش اکولوژی تالاب شادگان. وزارت جهاد کشاورزی، سازمان تحقیقات، آموزش و ترویج کشاورزی، موسسه تحقیقات علوم شیلاتی کشور- پژوهشکده آبزی پروری جنوب کشور، 116 صفحه.
  6. سالار دینی، ع. 1391. کودها و حاصلخیزی خاک. انتشارات دانشگاه تهران. چاپ نهم. 434 صفحه.
  7. شریف پور، ی.، حبشی، ه. و علی­عرب، ع.ر. 1397. تغییرات فصلی فعالیت مطلق و ویژه اسید فسفاتاز در رقابت ریزوسفری نهال­های لندمازو و پلت در کشت خالص و آمیخته. مجله زیست شناسی خاک، 6 (1)، 75-65.
  8. شهبازی، ک. 1386. گزارش نهایی تهیه بانک اطلاعات مکان­دار حاصلخیزی خاک در کشور. مؤسسه تحقیقات خاک و آب، ایران. شماره 1354.
  9. شهبازی، ک. و بشارتی، ح. 1392. بررسی اجمالی وضعیت حاصلخیزی خاک­های کشاورزی ایران. نشریه مدیریت اراضی، 1 (1)، 15-1.
  10. شیخلو، ف. و رسولی صدقیانی، م.ح. 1395. تأثیر کاربری های زراعی و جنگلی بر فعالیت برخی آنزیم­های خاک. مجله تحقیقات آب و خاک ایران، 47 (1)، 216-205.
  11. طهرانی، م.م.، پسندیده، م. و داودی، م.ح. 1390. گزارش نهایی تعیین پراکنش و توصیه عناصر کم مصرف در اراضی تحت کشت آبی استان­های گیلان، مازندران، همدان، کرمانشاه، آذربایجان و اصفهان. موسسه تحقیقات خاک و آب ایران. شماره 1618.
  12. عباسیان، ا.، گلچین، ا. و شکل آبادی، م. 1393. بررسی برخی از فعالیت های آنزیمی دو خاک هیستوسول و ارتباط آن­ها با خصوصیات بیولوژیکی و شیمیایی خاک. نشریه زیست شناسی خاک، 2 (2)، 124-111.
  13. عباسیان، ا.، گلچین، ا. و شکل آبادی، م. 1394. بررسی ویژگی‌های بیولوژیکی و فعالیت‌های آنزیمی خاک تحت تأثیر نوع خاک و عمق نمونه‌برداری. نشریه زیست شناسی خاک، 3 (1)، 43-31.
  14. علی احیایی، م. 1380. تهیه نقشه عناصر ریز مغذی در خاک­های زراعی استان­های کرمانشاه، تهران، قم و گرگان. موسسه تحقیقات خاک و آب، ایران. شماره 1265.
  15. متینی زاده، م.، خوشنویس، م.، آرمند، ن.، علی زاده، ط. و شمس آبادی، ف. 1394. رابطة همزیستی میکوریزی با عناصر غذایی نیتروژن کل، فسفات و پتاسیم و آنزیم­های خاک ریزوسفر شن (Lonicera nummulariifolia) در رویشگاه چهارطاق اردل. مجله جنگل ایران، انجمن جنگلبانی ایران، 7 (3)، 340-329.
  16. مصطفی طهرانی، ع. و حسینی، س.م. 1394. بررسی وضعیت برخی عناصر معدنی در خاک، علوفه و خون دام­های منطقه شادگان در استان خوزستان. فصلنامه تحقیقات کاربردی در علوم دامی، 4 (15)، 90-81.
  17. مقیمیان، ن.، حسینی، س.م.، کوچ، ی. و زارعی دارکی، ب. 1398. پویایی مشخصه­های بیوشیمی و میکروبیولوژی خاک در مدیریت های مختلف اراضی ناحیه هیرکانی غربی. تحقیقات آب و خاک ایران، 50 (4)، 1021-1009.
  18. ولی­زاده یونجالی، ر.، میرزایی آقجه قشلاق، ف. و قربانی، ا. 1394. مقایسه عناصر غذایی خاک و گیاهان مرتعی بر اساس طبقات ارتفاعی و مراحل زیستگرد در دامنه­های شمالی سبلان. نشریه علوم آب و خاک (علوم و فنون کشاورزی و منابع طبیعی)، 19 (73)، 246-233.
  19. Acosta-Martinez, V., Klose, S. and Zobeck, T.M. 2003. Enzyme activities in semiarid soils under conservation reserve program, native rangeland, and cropland. Journal of Plant Nutrition and Soil Science, 166: 699-707.
  20. Acosta-Martinez, V., Cruz, L., Sotomayor-Ramirez, D. and Perez-Alegria, L. 2007. Enzyme activities as affected by soil properties and land use in a tropical watershed. Applied Soil Ecology, 35: 35–45.
  21. Allison, V.J., Condron, L.M., Peltzer, D.A., Richardson, S.J., and Turner, B.L. 2007. Changes in enzyme activities and soil microbial community composition along carbon and nutrient gradients at the Franz Joseph chronosequence, New Zealand. Soil Biology and Biochemistry, 39: 1770–1781.
  22. Alvarez, S., and Guerrero, M.C. 2000. Enzymatic activities associated with decomposition of particulate organic matter in two shallow ponds. Soil Biology Biochemistry, 32: 1941–1951.
  23. Asha, B. and Palaniswamy, M. 2018. Optimization of alkaline protease production by Bacillus cereus FT 1 isolated from soil. Journal of Applied Pharmaceutical Science, 8 (2): 119-127.
  24. ASTM, Standard guide for collection, storage, characterization and manipulation of sediments for toxicological testing. Philadelphia, 1391-90.
  25. Bandick, A.K. and Dick, R.P. 1999. Field management effects on soil enzyme activities. Soil Biology and Biochemistry, 31:1471–1479.
  26. Bastida, F., Zsolnay, A., Hernandez T. and Garcia, C. 2008. Past present and future of soil quality indices: A biological perspective. Geoderma, 160-167.
  27. Bergstrom, D.W, Monreal, C.M. and King, D.J. 1998. Sensitivity of soil enzyme activities to conservation practices. Soil Science Society of America Journal, 62: 1286–1295.
  28. Burns, R.G. 1983. Extra cellular enzyme–substrate interactions in soil. In: Slater JH, Wittenbury R, Wimpenny JWT (eds) Microbes in their natural environment. Cambridge University Press, London, pp 249–298.
  29. Caldwell, B.A. 2005. Enzyme activities as a component of soil biodiversity: a review. Pedobiologia, 49: 637–644.
  30. Camenzind, T., Hattenschwiler, S., Treseder, K.K., Lehmann, A. and Rillig, M.C. 2018. Nutrient limitation of soil microbial processes in tropical forests. Ecological Monographs, 88 (1): 4–21.
  31. Chethan Kumar, K.V., K.R. Chandrashekar, and R. Lakshmipathy, 2008. Variation in arbuscular mycorrhizal fungi and phosphatase activity associated with Sida cardifolia in Karnataka. World Journal of Agricultural Sciences, 4: 770-774.
  32. Cui, J., Wang, J.J., Xu, J., Xu, C.H. and Xu, X. N. 2017. Changes in soil bacterial communities in an evergreen broad-leaved forest in east China following 4 years of nitrogen addition. Journal Soils Sediments, 17: 2156.
  33. Dai, Z.M., Su, W.Q., Chen, H.H., Barberan, A., Zhao, H.C., Yu, M.J., et al. Long-term nitrogen fertilization decreases bacterial diversity and favors the growth of Actinobacteria and Proteobacteria in agro-ecosystems across the globe. doi: 10.1111/gcb.14163.
  34. De Barros, J.A., De Medeiros, E.V., Da Costa, D.P., Duda, G.P., De Sousa Lima, J.R., Dos Santos, U.J., Dantas Antonino, A.C. and Hammecker, C. 2020. Human disturbance affects enzyme activity, microbial biomass and organic carbon in tropical dry sub-humid pasture and forest soils. Archives of Agronomy and Soil Science, 66 (4): 458-477.
  35. Dick, R.P., Sandor, J.A. and Eash, N.S. 1994. Soil enzyme activities after 1500 years of terrace agriculture in the Colca Valley, Peru. AgricultureEcosystemsEnvironment, 50: 123–131.
  36. Dick RP, Breakwell DP. and Turco, R.F. 1997. Soil enzyme activities and biodiversity measurements as integrative microbiological indicators. In: Methods for assessing soil quality. Soil Science Society of America. Madison, WI, pp 9–17.
  37. Dick, R.P. 1997. Soil enzyme activities as integrative indicators of soil health. In: Pankhurst CE, Doube BM, Gupta VVSR (eds) Biological indicators of soil health. CAB International, Wellingford, pp 121–156.
  38. Ehlers, K., Bakken, L.R., Frostegard, A., Frossard, E. and Bunemann, E.K. 2010. Phosphorus limitation in a Ferralsol: impact on microbial activity and cell internal P pools. Soil Biology and Biochemistry, 42: 558-566.
  39. Facchinelli, A., Sachi E. and Mallen, L. 2001. Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environment Pollution, 114: 313-324.
  40. Faucon, M.P., Colinet, G., Mahy, G., Ngongo Luhembwe, M., Verbruggen, N. and Meerts 2009. Soil influence on Cu and Co uptake and plant size in the cuprophytes Crepidorhopalon perennis and C. tenuis (Scrophulariaceae) in SC Africa. Plant Soil, 317: 201–212.
  41. Feddermann, N., Finaly, R., Boller, T. and Elfstrand, M. 2010. Functional diversity in arbuscular mycorrhiza – the role of gene expression, phosphorous nutrition and symbiotic efficiency. Fungal Ecology, 3 (1): 1-8.
  42. Foreman, C.M., Franchini, P. and Sinsabaugh, R.L. 1998. The trophic dynamics of riverine bacterioplankton: relationships among substrate availability, ectoenzyme kinetics and growth. Limnology and Oceanography, 43: 1344–1352.
  43. Gao, J., Bai, F., Yang, G. and Ou, W. 2007. Distribution characteristics of organic carbon, nitrogen, and phosphor in sediments from differentecologic zones of tidal flats in north Jiangsu province. Quarter Science, 27: 756–765.
  44. Gilliam, F.S. and Dick, D.A. 2010. Spatial heterogeneity of soil nutrients and plant species in herb-dominated communities of contrasting land use. Plant Ecology, 209: 83–94.
  45. Gorlier, A., M. Lonatti, M. Renna, C. Lussiana, G. Lombardi and L. M. Battaglini. 2012. Changes in pasture and cow milk compositions during a summer transhumance in the western Italian Alps. Journal of Applied Botany and Food Quality, 85 (2): 216 -223.
  46. Guo, H., X. He, and Y. Li, 2012. Spatial distribution of arbuscular mycorrhiza and glomalin in the rhizosphere of Caragana korshinskii in the Otindag sandy land, China, African Journal of Microbiology Research, 6 (28): 5745-5753.
  47. Hale, R.L., Grimm, N.B., Vorosmarty, C.J. and Fekete, B. 2015. Nitrogen and phosphorus fluxes from watersheds of the northeast US from 1930 to 2000: role of anthropogenic nutrient inputs, infrastructure, and runo. Glob. Biogeochemistry Cycles, 29: 341-356.
  48. Hamilton J.W. and Gilbert C.S. 1972. Composition of Wyoming range plant and soil. Agricultural Experiment Station. University of Wyoming. Research Journal, 55:1-14.
  49. Hasan, R.1996. Phosphorus status of soils in India. Better Crops International, 10 (2): 1-4.
  50. Hendriksen, N.B., Creamer, R.E., Stone, D.and Winding, A. 2016. Soil exo-enzyme activities across Europe the influence of climate, land-use and soil properties. Applied Soil Ecology 97: 44–48.
  51. Hill, B.H., Elong, C. M., Jicha, T. M., Cotter, A. M., Trebitz, A. S., and Danz, N. P. 2006. Sediment microbial enzyme activity as an indicator of nutrient limitation in Great Lakes coastal wetlands. Freshwater Biology, 51 (9): 1670–1683.
  52. Hou, E., Chen, C., Wen, D. and Liub, X. 2015. Phosphatase activity in relation to key litter and soil properties in mature subtropical forests in China. Science of the Total Environment, 515–516: 83–91.
  53. Hrask J., Fugas M. and Vadjic V. 2000. Soil contamination by Pb, Zn and Cd from lead smeltery. Environmental Monitoringand Assessment, 60: 359–36.
  54. Hue N.V., Uchida R., Ho M.C. 1998. Empirical models for the uptake of inorganic chemicals from soil by plants. U.S Department of Energy Office of Environmental Management. 120p.
  55. Jing X, Chen X, Tang M, Ding Z, Jiang L, Li P, et al. 2017. Nitrogen deposition has minor affect on soil extracellular enzyme activities in six Chinese forests. Science of the Total Environment, 607–608: 806–815..
  56. Khademi, H., mohammadi, J. and Nael, M. 2006. Comparison of selected soil quality indicators in different land use management systems in Boroojen, Chaharmahal Bakhtiari province, The Scientific Journal of Agriculture. 29: 111-124.
  57. Khan, Z.I., Hussain, A., Ashraf, M., Ashraf, M.Y. and Yousaf, M. 2004. A review on mineral imbalance in grazing livestock and usefulness of soil, dietary components, animal tissue and fluid analysis in the assessment of these imbalances. Journal of Animal Veterinaryadvances, 3: 394-412.
  58. Khaziyev, F.K. and Gulke, A.Y. 1991. Enzymatic activity of soils under agrocenosesa: status and problems. Pochvovedenie, 8: 88–103.
  59. Kotroczo Z., Veres Z., Fekete I., Krakomperger Z., Toth J.A., Laj­tha K., Tothmeresz B. 2014. Soil enzyme activity in response to long-term organic matter manipulation. Soil Biology and Bio­chemistry, 70: 237–243.
  60. Kujur, M., Gartia, S.K. and Patel, A.K. 2012. Quantifying the contribution of different soil properties on enzyme activities in dry tropical ecosystems. Journal of Agricultural and Biological Science, 7: 763-772.
  61. Kuziemska, B., Wysokinski, A. and Trebicka, J. 2020. The effect of different copper doses and organic fertilisation on soil’s enzymatic activity. Plant, Soil and Environment, 66 (2): 93–98.
  62. Lashermes G, Gainvors-Claisse A, Recous S, Bertrand I. 2016. Enzymatic Strategies and Carbon Use Efficiency of a Litter-Decomposing Fungus Grown on Maize Leaves, Stems, and Roots. Frontiers in Microbiology, p 7.
  63. Li, Q., Liang, J.H., He, Y.Y., Hu, Q.J. and Yu, S. 2014. Effect of land use on soil enzyme activities at karst area in Nanchuan, Chongqing, Southwest China. Plant, Soil and Environment, 60 (1): 15–20.
  64. Lin C., Zhu T., Liu L. and Wang D. 2010. Influences of major nutrient elements on Pb accumulation of two crops from a Pb-contaminated soil. Journal of Hazardous Materials, 174: 202–208.
  65. Liu, J., Chen, J., Chen, G., Guo, J. and Li, Y. 2020. Enzyme stoichiometry indicates the variation of microbial nutrient requirements at different soil depths in subtropical forests. PLoS ONE 15 (2): e0220599.
  66. Mao, Z., Wang, G., Liu, J. and Ren, L. 2009. Influence of salt marsh vegetation on spatial distribution of soil carbon and nitrogen in Yanchengcoastal wetland. Chinese Journal of Applied Ecology, 20, 293–297.
  67. Matinizadeh, M. S.A.A. Korori, M. Teimouri and W. Praznik. 2008. Enzyme Activities in Undisturbed and Disturbed Forest Soils Under Oak (Quercus brantii persica) as Affected by Soil Depth and Seasonal Varriation. Asian Journal of Plant Sciences, 7 (4): 368-374.
  68. McLaren, A.D. 1975. Soil as a system of humus and clay immobilized enzymes. Chemica Scripta, 8: 97–99.
  69. Moorhead, D.L., Sinsabaugh, R.L., Hill, B.H. and Weintraub, MN. 2016. Vector analysis of ecoenzyme activities reveal constraints on coupled C, N and P dynamics. Soil Biology and Biochemistry, 93: 1–7.
  70. Nannipieri, P., Giagnoni, L., Landi, L. and Renella, G. Role of Phosphatase Enzymes in Soil. Soil Biology, 26: 215-243.
  71. Piotrowska-Dlugosz, A. and Wilczewski, E. 2014. Soil Phosphatase Activity and Phosphorus Content as Influenced by Catch Crops Cultivated as Green Manure. Polish Journal Environmental Studies, 23 (1): 157-165.
  72. Prusty, B. A. K., Chandra, R. and Azeez, P. A. 2009. Distribution of carbon, nitrogen, phosphorus, and sulfur in the soil in a multiple habitatsystem in India. Australian Journal of Soil Research, 47, 177–189.
  73. Quine T.A. and Zhang Y. 2002. An investigation of spatial variation in soil erosion, soil properties and crop production within an agricultural field in Devon, U.K. Soil and Water Conserversation, 57: 50-60.
  74. Richardson, A.E., Barea J.M., McNeill, A.M., Prigent-Combaret, C. 2009. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by Microorganisms. Plant Soil, 321: 305.
  75. Rotanova, T.V., Melnikov, E.E., Khalatova, A.G., Makhovskaya, O.V., Botos, I., Wlo-dawer, A., Gustchina, A. 2004. Classification of ATP-dependent proteases Lonand comparison of the active sites of their proteolytic domains. European Journalof Biochemistry, 271: 4865–4871.
  76. Rydin, H. and Jeglum, J.K., 2013. The Biology of Peatlands. 2nd ed. Oxford University Press.
  77. Schilling, K. E. et al. Vertical distribution of total carbon, nitrogen and phosphorus in riparian soils of Walnut Creek, southern Iowa.CATENA. 77, 266–273 (2009).
  78. Sharma, C.M., Baduni, N.P., Gairola, S., Ghildiyal, S.K. and Suyal, S. 2010. Tree diversity and carbon stocks of some major forest types of Garhwal Himalaya, India. Forest Ecology and Management, 260: 2170-2179.
  79. Shukla, M.K., Lal R. and Ebinger, M. 2004. Principal component analysis for predicting corn biomass and grian yield. Soil Science, 169: 215-224.
  80. Silva, E.O., Medeiros, E.V., Duda, G.P., Lira-Junior, M.A, Brossard, M., Oliveira J.B., Santos, U.J. and Hammecker, C. 2019. Seasonal effect of land use type on soil absolute and specific enzyme activities in a Brazilian semi-arid region. Catena, 172:397–407.
  81. Singh, S.K., Singh, S.K., Tripathi, V.R., Khare, S.K., Garg, S.K., 2011. A novel psy-chrotrophic, solvent tolerant Pseudomonas putida SKG-1 and solvent stabilityof its psychro-thermoalkalistable protease. Process Biochemistry, 46, 1430–1435.
  82. Sinsabaugh, R.L., Antibus, R.K. and Linkins, A.E. 1991. An enzymic approach to the analysis of microbial activity during plant litter decomposition. Agriculture, Ecosystems and Environment, 34: 43–54.
  83. Sinsabaugh, R.L. and Foreman, C.M. 2003. Integrating dissolved organic matter metabolism and microbial diversity: an overview of conceptual models. In: Aquatic Ecosystems: Interactivity of Dissolved Organic Matter (Eds S.G. Findlay & R.L. Sinsabaugh), pp. 425–454. Academic Press, New York.
  84. Six, J., Elliot, E.T. and Paustian, K. 2000. Soil macroaggregate turn over and micro-aggregate formation for C sequestration under no-tillage agriculture. Soil Biology and Biochemistry, 32: 2099-2103.
  85. Smith, S.E., and D.J. Read, 2008. Mycorrhizal Symbiosis, Academic Press, London, 800 pp.
  86. Svetlana, L. and Slavkovi, L. 2006. Inorganic analysis of herbal drugs. Part II. Plant and soil analysis–diverse bioavailability and uptake of essential and toxic elements. Journal of the Serbian Chemical Society, 71 (10): 1095-1105.
  87. Suttle, F.N. 2010. Mineral nutrition of livestock, 4th Edition. Midlothian CABI International, Wallingford, UK.
  88. Tabatabai, M.A. 1994. Soil enzymes. PP: 775–833. In: R.W. Weaver, J.S. Angle and P.J. Bottomley (Eds.), Methods of Soil Analysis. Part 2, Microbiological and Biochemical Properties. SSSA, Madison.
  89. Thorup-Kristensen, K., Magid, J., Jensen L.S. 2003. Catch crops and green manures as biological tools in nitrogen management in temperate zones. Advance Agronomy, 79: 227.
  90. Thorup-Kristensen, K., Dresboll, D.B. 2010. Incorporation time of nitrogen catch crops influences the N effect for the succeeding crop. Soil Use Manage. 26: 27.
  91. Udawatta, R.P., Kremer, R.J., Garrett, H.E. and Anderson, S.H. 2009. Soil enzyme activities and physical properties in a watershed managed under agroforestry and row-crop systems. Agriculture, Ecosystems and Environment 131: 98-104.
  92. United States Environmental Protection Agency (USEPA), 1996. Method 3050B: Acid digestion of sediments sludges and soils (revision 2).
  93. Vasquez-Murrieta, M.S., Govaerts, B. and Dendooven, L. 2007. Microbial biomass C measurements in soil of the central highlands of Mexico. Applied Soil Ecology 35: 432-444.
  94. Wang, Q., Xiao, F., He, T. and Wang, S. 2013. Responses of labile soil organic carbon and enzyme activity in mineral soils to forest conversion in the subtropics. Annals of Forest Science 70: 579-587.
  95. Wang, Q., Wang, C., Yu, W., Turak, A., Chen, D., Huang, Y., Ao, J., Jiangm, Y. and Huang, Z. 2018. Effects of Nitrogen and Phosphorus Inputs on Soil Bacterial Abundance, Diversity, and Community Composition in Chinese Fir Plantations. Front. Microbiol. 9: 1543.
  96. Wetzel R.G. 1991. Extracellular enzymatic interactions: storage, redistribution, and interspecific communication. In: Chrost RJ (ed) Microbial enzymes in aquatic environments. Springer-Verlag, New York, p 6–28.
  97. Wood C. W. Westfall D. G. Peterson G. A. and Bruke I. C. 1990. Impacts of cropping intensity on carbon and nitrogen mineralization under no-till dryland agro-ecosystems. Agronomy Journal, 82(6): 1115-1120.
  98. Wu, G., Liu, Z. H., Zhang, L., Hu, T. and Chen, J. 2010. Effects of artificial grassland establishment on soil nutrients and carbon properties in a black-soil-type degraded grassland. Plant Soil, 333: 469–479.