تأثیر شوری خاک و تلقیح بذر با باکتری‌های افزاینده رشدی PGPR بر مقادیر سدیم و پتاسیم، هدایت روزنه‌ای و عملکرد گندم

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد زراعت دانشگاه محقق اردبیلی

2 دانشیار دانشکده کشاورزی دانشگاه محقق اردبیلی

10.22092/sbj.2014.128411

چکیده

به منظور بررسی تأثیر شوری خاک و تلقیح  بذر با باکتری های PGPR بر سدیم و پتاسیم، هدایت روزنه ای و عملکرد گندم، آزمایشی به صورت فاکتوریل در قالب طرح پایه بلوک­های کامل تصادفی  با سه تکرار در سال  تحت شرایط گلخانه 1390 اجرا گردید. فاکتورهای مورد بررسی شامل چهار سطح شوری خاک ( صفر، 15، 30 و 60 میلی مولار از نمک NaCl) و چهار سطح تلقیح بذری با PGPR (عدم تلقیح بذر، تلقیح بذر با ازتوباکترکروکوکوم استرین 5، آزوسپیریلوم لیپوفروم استرین OF ، سودوموناس پوتیدا استرین 186) بودند. نتایج نشان داد که عملکرد کمی و کیفی، هدایت روزنه­ای و مقادیر سدیم و پتاسیم در ریشه و اندام­های هوایی به طور معنی­داری تحت تأثیر شوری خاک و تلقیح بذر با باکتری­های محرک رشد قرار گرفتند. مقایسه میانگین­ها نشان داد که در شرایط شوری خاک، عملکرد دانه تک بوته، تعداد دانه در سنبله، وزن صد دانه، طول سنبله، وزن ریشه بواسطه تلقیح بذر با باکتری­های محرک رشد افزایش یافت. با افزایش شوری خاک، نسبت پتاسیم به سدیم در ریشه و اندام های هوایی کاهش نشان داد. روند عکسی در حالت تلقیح بذر با باکتری­های محرک رشدی مشاهده شد. حداکثر نسبت سدیم به پتاسیم در بالاترین سطح شوری  و بدون تلقیح بذر با باکتری­های محرک رشد و کمترین آن در پایین ترین سطح شوری و تلقیح بذر با ازوسپریلوم بدست آمد. بنابراین می­توان پیشنهاد نمود که به منظور افزایش عملکرد کمی و کیفی، افزایش هدایت روزنه­ای و کاهش نسبت سدیم به پتاسیم در ریشه و اندام های هوایی، تلقیح  بذر گندم با آزوسپریلوم انجام شود
 

کلیدواژه‌ها


عنوان مقاله [English]

Influence of Soil Salinity and Seed Inoculation with Plant Growth Promoting Rhizobacteria (PGPR) on Sodium and Potassium Contents, Stomatal Conductance and Yield of wheat (Triticum aestivum L.)

نویسندگان [English]

  • M. Hagh Bahari 1
  • R. Seyed Sharifi 2
1 MSc. Student, University of Mohaghegh Ardabili
2 Associate Professor, Faculty of Agriculture, University of Mohaghegh Ardabili
چکیده [English]

In order to investigate the influence of soil salinity and seed inoculation with plant growth promoting rhizobacteria (PGPR) on sodium and potassium, stomatal conductance and yield of wheat (Triticum aestivum L.), a factorial experiment based on randomized complete block design with three replications was conducted  under  greenhouse conditions  at the University of Mohaghegh Ardabili in 2012. Experimental factors  included four levels of soil salinity  (0, l, 15, 30 and 60 Mm  Nacl) and four levels of seed inoculation with PGPR (no  inoculation as control,  inoculations with Azotobacter chroococum strain 5, Azosperilium lipoferum strain OF or Pseudomonas putida strain 186). The results showed that the quality and quantity , stomatal conductance, sodium and potassium contents of root and shoot were significantly affected  by soil salinity and seed inoculation with PGPR. Means comparison showed that  under salinity conditions, grain yield per plant, number of seed per spike, 100 grains weight, spike length and root weight increased due to seed inoculation with PGPR. I Increasing  in soil salinity raised  Na+/K+ ratio in root and shoots  while  seed inoculation with PGPR decreased the ratio. Maximum of Na+/K+ was obtained at the highest level of salinity with no inoculation  with PGPR. The minimum ratio  was recorded in the treatments their seed inoculated t with Azospirillum with the least level of salinity. Thus  in order to ,  decrease Na+/K+ in root and shoots, maintain high stomatal conductance and ultimately achieve high  quality and quantity of wheat yield,  seed inoculation   with  Azospirillum seems promising.
 

کلیدواژه‌ها [English]

  • Plant Growth Promoting Rhizobacteria (PGPR)
  • Salinity
  • Wheat
  • Yield
  1. کوچکی، ع. و نصیری محلاتی، م. (1373) اکولوژی گیاهان زراعی، جلداول، انتشارات جهاد دانشگاهی مشهد. ص 291.
  2. مستأجران، ا، عموآقائی، ر، و امتیازی، گ. (1384) اثر آزوسپیریلوم و اسیدیته قلیائی آب آبیاری بر عملکرد دانه و میزان پروتئین ارقام زراعی گندم. مجله زیست­شناسی ایران. ج 18، ش3، ص 260-248.
  3. برزوئی، ا. کافی، م. خزائی، ح .ر. و موسوی شلمانی، م.ا. (1390) تأثیر شوری آب آبیاری بر صفات ریشه دو رقم حساس و مقاوم به شوری گندم و ارتباط آن با عملکرد دانه در شرایط گلخانه. مجله علوم و فنون کشت­های گلخانه­ای. سال دوم ش هشتم.
  4. پوستینی، ک. 1374. واکنش های فیزیولوژیکی دو رقم گندم نسبت به تنش شوری. مجله علوم کشاورزی. ج 26 ش 2 ص 57-65..
  5. ثابت تیموری، م. خزاعی. ح. نظامی، ا. و نصیری محلاتی، م. 1386. تأثیر سطوح مختلف شوری بر فعالیت آنتی اکسیدان برگ و خصوصیات فیزیولوژیکی گیاه کنجد. پژوهش کشاورزی: آب خاک گیاه در کشاورزی، ج 4. ش 7، ص 119-109.
  6. حاجیلو، م. سلیمی، ح، اصغری ، ح، خاوازی. ک. استفاده از باکتر­های محرک رشد گیاه به عنوان کود زیستی در جهت پایداری اکوسیست­ های زراعی. اولین کنگره چالش­های کود در ایران : نیم قرن مصرف کود 10-12  اسفند. تهران – هتل المپیک.
  7. خدابنده، ن. 1382. غلات. انتشارات دانشگاه تهران. 537 ص.
  8. خرم­دل، س.، کوچکی، ع.، نصیری محلاتی، م.، قربانی، ر. 1387. اثر کاربرد کودهای بیولوژیک بر شاخص‌های رشدی سیاهدانه. مجله پژوهش­های زراعی ایران. ج :6. ص ؛294-285
  9. درویشی، ب. پوستینی، ک. و توکل­افشاری، ر. 1388. بررسی الگوی توزیع یونی در اندام­های مختلف یونجه و رابطه آن با عملکرد در شرایط تنش شوری. مجله علوم گیاهان زراعی ایران، ش 2، ص 31-43.
  10. ذبیحی، ح.ر، ثواقبی، غ.ر. خاوازی، ک. و گنجعلی، ع. 1388. بررسی تأثیر کاربرد سویه­هایی از سودوموناس­های فلورسنت بر عملکرد و اجزای عملکرد گندم در سطوح مختلف شوری خاک. مجله آب و خاک (علوم و صنایع کشاورزی) ج23، ش 1، ص 208-199.
  11. رمضانیان، ع. 1384. مکانیزم­های به کار برده شده توسط باکتری­های ریزوبیومی برای کاهش سطح اتیلن در گیاه و افزایش گره­زایی. اوّلین همایش ملّی حبوبات. 29 و30 آبان. مشهد مقدس.
  12. عباسی، ف. و خاوری نژاد، ر. 1381. اثر تنش شوری بر خصوصیات رشد و جنبه­های فیزیولوژیکی گونه Aeluropus littoralis. نشریه بیابان، ج 7، ش1، ص 110-101.
  13. عمو اقایی، ر. مستاجران، ا و رحیمی،گ .1381. اثر سویه و غلظت باکتری آزوسپیریلوم روی رشد و نمو ریشه گندم. ج 33، ش2، ص 212-222.
  14. مشعوف، م. اسماعیلی آزاد گله، م.ع. بابائیان جلودار، ن.ع. و کافی، م. 1382. واکنش فتوسنتزی و هدایت روزنه­ای دو رقم جو تحت تنش شوری. مجله پژوهش­های زراعی ایران، ج 1. ش 1، ص 51-43.
  15. Abbaspoor, A. Zabihi, H.R. Movavegh, S. and Akbari, M.H.2009. The efficiency of plant growth promoting Rhizobacteria (PGPR) on yield and yield components of   two varieties of wheat in salinity conditions. Journal of  Sustainable Agricultural. 3(4):824_828.
  16. Alamgir, A., Kutube, K.K. and Paul, T. 1997. Use of mathematical growth curves in the analaysis of growth and nutrient distribution pattern in wheat growth under salinity stress. Agronomy Journal. 21:37-46.39.
  17. , M.I., Sueldo, R.J. and Barassi, C.A. 1996. Effect of Azospirillum on coleoptile growth in wheat seedling under water stress. Cereal Research  Communication. 24: 101-107
  18. Ashraf, M. 2004. Some important physiological selection criteria for salt tolerance in plants. Flora. 199:361-376.
  19. M., Rodriguez, H., Mereno. M. and Hernandez, J.P.2004. Mitigation of salt stress in wheat seedling by Azospirillum lipferum. Soil Biology. 40: 188-193.
  20. Bashan, Y. Levanony, H. and Mitiju, G. 1989. Changes in proton efflux of intact wheat root induced by A. brasilense Cd. Canadian Journal of  35: 691-67.
  21. Basra, A.S. and Basra, P.K.1997. Mechanisms of environmental stress resistance in Plants. Hardwood Academic Publishers, 83-111.
  22. Bashan,Y., Harrison, K. and Witimoyer, R.E. 1990. Enhanced growth of wheat and soybean plants inoculated with azospirillum brasilense is notnecessary due to general enhancement of mineral uptake. Applied Enviromental Microbiology. 56: 769-775.
  23. Belimov, A.A., Safronova, V.I. and Mimura, T. 2002. Response of spring rape (Brassica napus oleifera L.) to inoculation with plant growth promoting rhizobacteria containing 1- aminocyclopropane-1-carboxylate deaminase depends on nutrient status of the plant. Canadian Journal of Microbiology. 48, 189-199.
  24. Benlloch, M., Ojeda, M.A., Ramos, J. and Rodriguesnanavarro, A. 1994. Salt sensitivity and llow discrimiation between potassiumand sodium in plants. Plant and Soil. 166: 117-123.
  25. Bhattari, T., and Hess, D. 1993.Yield responses of Nepalese spring wheat (Triticum aestivum) cultivars ti inoculation with azospirillum spp of Nepalese origin. Plant and Soil. 151: 67-76.
  26. Brognoli, E. and Bjorkman, D.1992. Growth of cotton under continous salinity stress. Influence of allocation pattern, stomatal and non stomatal components of photosynthesis and dissipation of excess light energy. Planta. 187: 335-347.
  27. Chatrath, A. Mandal, P.K. and Anuradha, M.2000. Effect of secondary salinization on photosynthesis in fodder oat (Avena Sativa) genotypes. Journal of Agronomy and Crop Science. 184: 13-16.
  28. Chen, Z. Newman, I., Zhuo, M., Mendham, N., Zhang, G. and Shabala, S. 2005. Screening plants for salt tolerance by measuring K+ flux:a case study for barely. Plant Cell and   28, 1230-1246.
  29. Chen, Z., Newman, I., Zhuo, M., Mendham, N., Zhang, G. and Shabala, S. 2005. Screening plants for salt tolerance by measuring K+ flux:a case study for barely. Plant, Cell and Enviromental. 28: 1230-1246.
  30. Desingh, R and Kanagaraj, G. 2007. Influence of salinity stress on photosynthesis and antioxidative systems in two cotton varieties. Genetic Applied and Plant Physiology. 33: 221-234.
  31. Garcia, A. Rizzo, C.A., UD-Din, J., Bartos, S.L., Flowers, T.J. and Yeo, A.R. 1997. Sodium and potassium transpott to the xylem are inherited independent lyin­rice, and the mechanisms of sodium: potassium selectivity differs between rice and wheat. Plant Cell and Enviroment. 20: 1167-1174.
  32. Glick, B.R. Penrose, D. and Wendo, M.2001. Bacterial promotion of plant growth. Biotechnology 19: 135-138.
  33. Gramer, G.R. Alberico, G.J. and Schmidt, C. 1994. Salt tolerance is not associated with the sodium accumulation of two maize hybrids. Australian Journal of Plant Physiology.21(5): 675-682.
  34. Hamaoui, B. Abbadi, J.M., Burdman, S., Rashid, A., Sarig, S. and Okon, Y.2001. Effects of inoculation with Azospirillum brasilense on chickpeas (Cicer arietinum) and faba beans (Vicia faba) under different growth conditions. Agronomy   Journal. 21:553-560.
  35. Hamdi, M.A. Shaddad, M.A.K. and Doaa, M.M. 2004. Mechanisms of salt tolerance and interactive effects of Azospirillum brasilense inoculation on maize cultivars grown under salt stress conditions. Plant  Growth Regulation. 44: 165–174.
  36. Hamdia, M.A. and El-Komy, H.M.1997. Effects of salinity, gibberelic acid and Azosbirillum inoculation on growth and nitrogen uptake of Zea mays. Plant Biology. 40:109-120.
  37. Hasnain, S., Sabri, A.N. 1996. Growth stimulation of Triticum aestivum  seedlings under Cr-stresses by non-rhizospheric pseudomonad strains. Enviromental Pollutry. 97(3):265-73
  38. Kafi, M. and Stwart, D.A. 1998. Effect of salinity on growth and yield of nine types of wheat. Agronomy Food  12(1): 77-85.
  39. Lobna, Z. Gharbi, F., Rezgui, F., Rejeb, S., Nahdi, H. and Rejeb, M.N.2009. Application of chlorophyll fluorescence for the diagnosis of salt stress in tomato Solanum lycopersicum (variety Rio Grande). Horticultural   120: 367–372.
  40. Luttge, V. Andrew, J. and Smith, C. 2004. Structural, biophysical, and biochemical aspects of the role of the leaves in plant adaptation to salinity and water stress. In: R. C. Staples.,and G. H. Toennienssen. Salinity tolerance in plants. pp: 125–151. A wiley Interscience Publication.
  41. Mass, E.V.1986. Physiological response of plants to chloride in chloride and crop production. Potash Phosphate Institute. 4-20.
  42. Munns, R. and Termaat, A. 2002. Whole plant responses to salinity. Plant Physiology. 13: 143-160.
  43. Nadeem, S.M., Zahir, Z.A., Naveed, M. and Arshad, M. 2007. Preliminary investigations on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC deaminase activity. Canadian Journal of Microbiology. 53 (10):1141-9.
  44. Nelson, D.E. Rammesmayer, G. and Bohnert, H.J. 1998. Cell-specific inositol metabolism and transport in plant salinity tolerance. Plant  3: 117-121.
  45. Okon, Y. Albercht, L.S. and Buriss, R.H. 1977. Methods of growing Spirillum lipoferum with plants. Experimental 33: 85-88.
  46. Okon, Y. and Kapolink, Y.1986. Development and function of Azospirllum- inoculated roots. Plant and  Soil, 90: 3-16.
  47. Okon,Y. and Labandera-Gonzalez, C.A.1994. Agronomic applications of Azospirillum: an evaluation of 20 years worldwide field inoculation. Soil Biology and Biochemistry. 26: 1591-1601.
  48. Omar, M.N.A. Osman, M.E.H., Kasim, W.A. and Abd El-Daim, I.A. 2007. Improvement of salt tolerance mechanisms of barley cultivated under salt stresses using of Azosprilium brasilense. Plant and  44:133-147.
  49. Rai, R.S.1991.Rain –specific salt tolerance and chemotaxis of azospirillum brasilence and their associate n-fixation with finger millet in saline calcareowes soil.Plant and Soil. 137: 55-59.
  50. Rao, A.V. and Warla, B.V. 1985.Salt tolerance of azospirillum brasilense.Acta 32: 221-224.
  51. Rodriguez, H. and Fraga, R. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biological 17: 319-339.
  52. Saravana Kmar, D and Samiyapoan, R. 2007. Acc deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogaea l.) plants. Journal of Applied Microbiology.102:1283-1292.
  53. Sarige, S., Blum, A. and Okon, Y. 1988.Improvement of the water status and yield of field-grown grain sorghum (bicolor) by inoculation with A.brasilense. Journal of  Agricultural  Science. 110: 271-277.
  54. Schochman, D.P., Munns, R. and Whitecross, M.I.1991. Variatio in sodium exclusion and salt tolerance in triticum tauschii. Crop  31: 992-997.
  55. Scott, M.L. Catterina, M.G., Eugene, V.M. and Leland, E.F. 1992. Kernel distribution. 1: Main spikes of salt stressed wheat. Aprobablitic modeling approach. Crop Science. 32: 704-712.
  56. Siliberabush, M. and Ben-Asher, J. 1987. The effect of salinity on parameters of potassium and nitrate uptake of cotton commun. Soil Science. 18(1): 65-81.
  57. Singh, B.R. and Singh, D.P.1994. Effect of moisture stress morphological parameters and productivity of poaceous crops. Agro Botanical Publishers. India, Bikaner. pp: 241-246.
  58. Singleton, D.W. and Bohlool, B.B. 1984. Effect of salinity on the nodule formation by soybean. Plant. Physiology. 74:pp. 72-76.25.
  59. Spirts, J. H.J. and Vos, J. 1985. Grain growth of wheat and its limiatiaon by carbohydrate and nitrogen supply. pp: 129- 141: W. Day and R. L. Atkin (ed). 129- 141.
  60. Suneja, S. Lakshminarayana, K. and  Gupta, P.P.1994. Role of Azotobacter chroococcum siderphores in control of bacterial rot and Sclrotinia rot of mustard. Indian Journal of  Microbiology  and Plant Pathology. 24: 202-205.
  61. Tajbakhsh, M. Zhou, M.X., Chen, Z.H. and Mendham, N.J.2006. Physiological and cytological response of salt-tolerant and non-tolerant barley to salinity during germination and early growth. Australian Journal of Experimental 46: 555–562.
  62. Tipping and, E.M. and Zaleska, I. 1987. Growth promotion of canola (rapseed) seedlings by a strain of pseudomonas putida under genotobiotic conditions. Canadian Journal of Microbiology. 33: 390_395.
  63. Triphati Mishra, A.K. and Tripathi, P.1998. Salinity stress responses in the plant growth promoting rhizobacteria., Aazosprillum spp. J. Biosci. 23(4): 463-471.
  64. Uzma, F. and Asghari, B. 2006. Effect of abscisic acid and chlorocholine chloride on nodulation and biochemical content of Vigna radiata L. under water stress. Pakistan Journal of 38(5): 1511-1518.
  65. Wagar, A., B.Shahroona, Z., Zahir, A. and Arshad, M.2004. Inoculation with Acc deaminase containing rhizobacteria   for  improvming  growth and  yield  of  Pakistan  Journal of  Agriculture. 41: 119-124.
  66. Yassen, B.Y. and Jurgees, J.A. 1998. The response of sugar beet leaf growth and its ionic composition to sodium chloride. Journal of Agriculture and Water Resource Research.7: 47– 59.
  67. Zahran, H. 1999. Rhizobiumlegom symbiosis and nitrogen fixation under sever condition and in arid climat. Microbiology and  Molecular  Biology  4: 968-989.