تأثیرPseudomonas putida بر عملکرد و جذب فسفر سه رقم سورگوم علوفه‌ای

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار دانشکده کشاورزی دانشگاه گیلان

2 دانشجوی کارشناسی ارشد زراعت دانشگاه آزاد رودهن

3 دانشیار موسسه تحقیقات خاک و آب کرج

10.22092/sbj.2014.128413

چکیده

به منظور بررسی نقشPseudomonas putida  بر خواص کمی و کیفی سه رقم سورگوم علوفه­ای، آزمایشی به صورت فاکتوریل و در قالب طرح بلوک­های کامل تصادفی با سه تکرار در مرکز تحقیقات کشاورزی و منابع طبیعی استان تهران (ورامین) در سال زراعی 89-1388 اجرا شد. تیمارهای مورد بررسی در این تحقیق شامل سویه­های باکتری و گیاه بودند. عامل نوع باکتری در چهار سطح شامل بدون تلقیح بذر (شاهد)، تلقیح بذر باPseudomonas putida strain 168، تلقیح بذر با P. putida strain 41 و تلقیح بذر با ترکیبی از دو باکتری و عامل رقم در سه سطح شامل Speedfed، Jumbo و KFS1 اعمال شدند. در این آزمایش صفاتی چون ارتفاع بوته، تعداد پنجه، قطر ساقه، تعداد برگ، سطح برگ در مرحله گلدهی، وزن تر و خشک ساقه، وزن تر و خشک برگ، عملکرد علوفه­تر و خشک، درصد فسفر گیاه و میزان فسفر خاک مورد ارزیابی قرار گرفتند. تیمار تلقیح بذر با P. putida strain 168 در اکثر صفات مورد بررسی دارای بالاترین میانگین بود و کمترین آنها در تیمار ترکیبی از دو باکتری مشاهده شد. به نظر می­رسد که ریزسازواره­های حل­کننده فسفات با یکدیگر اثر آنتاگونیستی دارند، هر چند که تلقیح بذر با هر یک از آنها به تنهائی به دلیل جذب عناصر غذائی به ویژه فسفر و نیز تحریک رشد گیاه بر اثر ترشح متابولیت های ثانویه می تواند منجر­به افزایش عملکرد گیاه شود.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Pseudomonas putida on Yield and Phosphorus Uptake of Three Forage Sorghum Cultivars

نویسندگان [English]

  • S. M. R. Ehteshami 1
  • M. R. Abbasi 2
  • K. Khavazi 3
1 Assistant Professor, University of Guilan
2 M. Sc Agronomy, Islamic Azad University, Branch of Rudehen
3 Faculty member, Research Institute of Soil and Water, Karaj
چکیده [English]

To investigate the effect of Pseudomonas putida bacteria application on quantitative and qualitative characteristics of three forage sorghum cultivars, an experiment was carried out at the Agricultural and Natural Resource Research Center of Tehran Province (Varamin) during 2009-2010. The experiment comprised of a factorial arrangement of treatments based on a complete randomized block design with three replications.  The treatments consisted of different bacterial strains and sorghum cultivars. The bacterial strain factor  was 1) no seed inoculation (control), 2) seed inoculation with Pseudomonas putida strain 168, 3) seed inoculation with Pseudomonas putida strain 41 and 4) seed co-inoculation with both bacterial strains. The investigated sorghum cultivars were 1) Speedfeed, 2) Jumbo and 3) KFS1.  The measured traits were plant height, number of tillers, stem diameter , leaf number , , plant tissue P content,  soil available P and the dry and fresh weights of stem, leaf, and forage yield. Seed inoculation with Pseudomonas putida strain 168 achieved the highest level in most of the measured characteristics. However, seed co-inoculation with the two bacterial strains had the lowest performance for the most traits. The findings of this research showed that integrated bacteria application created an antagonistic effect. However, seed inoculation with Pseudomonas putida strain 168 enhanced nutrient uptake (especially P) and consequently promoted plant growth. It seems that stimulation of the secondary metabolites production  would lead to better forage yield in sorghum.
 

کلیدواژه‌ها [English]

  • Forage Sorghum
  • Phosphate-Solubilizing Bacteria
  • Phosphorus
  • Yield
  1. احتشامی، س.م.ر.، آقاعلیخانی، م.، چائی­چی، م.ر. و خاوازی، ک. 1388. تأثیر کودهای زیستی فسفاته بر خواص کمی و کیفی ذرت دانه ای تحت شرایط تنش کم آبی. مجله علوم گیاهان زراعی ایران 40 (1): 27-15.
  2. احتشامی، س.م.ر.، جاوید، ح.، مریدی، ر. و خاوازی، ک. 1388. کارائی باکتری های محرک رشد بر جوانه زنی برنج در شرایط تنش شوری. اولین همایش ملی تنش های محیطی در علوم کشاورزی، دانشکده کشاورزی دانشگاه بیرجند.
  3. حسن­زاده، ا.، مظاهری، د.، چائی­چی، م.ر. و خاوازی، ک. 1386. کارائی مصرف باکتری های تسهیل کننده جذب فسفر و کود شیمیائی فسفر بر عملکرد و اجزای عملکرد جو. پژوهش و سازندگی (زراعت و باغبانی) 77: 118-111.
  4. رمضانیان، ع. 1384. نقش باکتری های ریزوبیومی مولد آنزیم ACC دآمیناز در تعدیل اثرات سوء اتیلن استرسی در گیاه گندم. پایان نامه کارشناسی ارشد خاکشناسی، دانشکده مهندسی آب و خاک، دانشگاه تهران.
  5. ملکوتی، م.ج. و همائی، م. 1372. حاصلخیزی خاک های مناطق خشک « مشکلات و راه حل ها». چاپ اول. انتشارات دانشگاه تربیت مدرس. 494ص.
  6. Adesemoye, A.O., Torbert, H.A. and Kloepper, J.W. 2010. Increased plant uptake of N from 15N-depleted fertilizer using PGPR. Applied Soil Ecology 46: 54-58.
  7. Afzal, A., Ashraf, M., Asad, S.A. and Faroog, M. 2005. Effect of phosphate solubilizing microorganism on phosphorus uptake yield and yield traits of wheat (Triticum aestivum ) in rainfed area. Intrenational Journal of Agricultural Biology 7:207-9.
  8. Aseri, G.K., Neelam, J., Jitendra, P., Rao, A.V. and Meghwal, P.R. 2008. Biofertilizers improve plant growth, fruit yield, nutrition, metabolism and rhizosphere enzyme activities of Pomegranate (Punica granatum) in Indian Thar Desert. Science of Horticulture 117:130-135.
  9. Banchio, E., Bogino, P.C., Zygadlo, J. and Giordano, W. 2008. Plant growth promoting rhizobacteria improve growth and essential oil yield in Origanum majorana Biochemical Systems and Ecolology 36: 766-771.
  10. Belimov, A.A., Safronova, V.I. and Mimura, T. 2002. Response of spring rape (Brassica napus Olifera L.) to inoculation with plant growth promoting rhizobacteria containing 1-aminocyclopropane- 1-carboxylate deaminase depends on nutrient status of the plant. Canadian Journal of Microbiology 48: 189–199.
  11. Celebi, S.Z., Demir, S., Celebi, R., Durak, E.D. and Yilmaz, I.H. 2010. The effect of Arbuscular Mycorrhizal Fungi (AMF) applications on the silage maize (Zea mays) yield in different irrigation regimes. European Journal of Soil Biology, In Press, Corrected Proof, Available online 29 June 2010.
  12. Dodd, J.C., Burton, C.C., Bums, R.G. and Jeffries, P.J. 1987. Phosphatase activity associated with the roots and the rhizosphere of plants infected with vesicular arbuscular mycorrhixal fungi. New Phytologist 167: 163-172.
  13. Edwards, S.G., Peter, J., Young, W. and Fitter, A.H. 1998. Interactions between Pseudomonas fluorescens biocontrol agents and Glomus mosseae, an arbuscular mycorrhizal fungus, within the rhizosphere.  Original Research Article FEMS Microbiology Letters 166: 297-303.
  14. Esitken, A., Hilal, Y., Ercisli, S., Figen Donmez, M., Tyran, M. and Gunes, A. 2010. Effects of plant growth promoting bacteria (PGPB) on yield, growth and nutrient contents of organically grown strawberry. Science of Horticulture 124: 62-66.
  15. Gholami, A., Shahsavani, S. and Nezarat, S. 2009. The effect of plant growth promoting rhizobacteria (PGPR) on germination, seedling growth and yield of maize. International Journal of Biological Life Science 1(1): 35-40.
  16. Gollnera, M.J., Puschelb, D., Rydlovab, J., Jana, D. and Vosatka, M. 2006. Effect of inoculation with soil yeasts on mycorrhizal symbiosis of maize. Pedobiology 50: 341-345.
  17. Hamel, C. and Smith, D.L. 1991. Interspecific N-transfer and plant development in a mycorrhizal field-grown mixture. Soil Biology and Biochemistry 23(1): 661-665.
  18. Kavino, M., Harish, S., Kumar, N., Saravanakumar, D. and Samiyappan, R. 2010. Effect of chitinolytic PGPR on growth, yield and physiological attributes of banana (Musa) under field conditions. Applied Soil Ecology 45: 71-77.
  19. Kim, K.Y., Jordan, D. and McDonald, G.A. 1998. Effect of phosphate-solubilizing bacteria (PSB) and VAM on tomato growth and soil microbial activity. Biology and Fertility Soils 26: 79-87.
  20. Li, H.Y., Zhu, Y.G., Marschner, P., Smith, F.A. and Smith, S.E. 2005. Wheat responses to arbuscular mycorrhizal fungi in a highly calcareous soil differ from those of clover, and change with plant development and P supply. Plant Soil 277: 221–232.
  21. Lucy, M., Reed, E. and Glick, B.R. 2004. Applications of free living plant growth promoting rhizobacteria. Antonie van Leeuwenhoek 86: 1–25.
  22. Mahato, P., Badoni, A. and Chauhan, J.S. 2009. Effect of Azotobacter and Nitrogen on Seed Germination and Early Seedling Growth in Tomato. Researcher, 1(4), http://www.sciencepub.net, sciencepub@gmail.com
  23. Mehnaz, S., Kowalik, T., Reynolds, B. and Lazarovits, G. 2010. Growth promoting effects of corn (Zea mays) bacterial isolates under greenhouse and field conditions. Soil Biology and Biochemistry 42:1848-1856.
  24. Miransari, M., Bahrami, H.A., Rejali, F. and Malakout, M.J. 2008. Using arbuscular mycorrhizae to alleviate the stress of soil compaction on wheat (Triticum aestivum ) growth. Soil Biology and Biochemistry 40(5): 1197-1206.
  25. Olsen, S.R., Cole, C.V., Watanabe, F.S. and Dean, L.A. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. United States Department of Agriculture Circular 939: 1-19.
  26. Pamella, A.C.S. and Steven, H. 1982. Inorganic phosphate solubilization by rhizosphere in a zostera marin community. Canadian Journal of Microbiology 28: 605–610.
  27. Piromyou, P., Buranabanayat, B., Tantasawat, P., Tittabutr, P., Boonkerd, N. and Teaumroong, N. 2011. Effect of plant growth promoting rhizobacteria (PGPR) inoculation on microbial community structure in rhizosphere of forage corn cultivated in Thailand. European Journal of Soil Biology 47: 44-54.
  28. Rodriguez, H. and Fraga, R. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion (review paper). Biotechnology Advances 17: 319-339.
  29. Sekar, K.R. and Karmegam, N. 2010. Earthworm casts as an alternate carrier material for biofertilizers: Assessment of endurance and viability of Azotobacter chroococcum, Bacillus megaterium and Rhizobium leguminosarum. Science of Horticulture 124: 286.289.
  30. Shah, P., Kakar, K.M. and Zaha, K. 2001. Phosphorus use efficiency of soybean as effected by phosphorus application and inoculation. Plant Nutrition Food Sec. Sus. of AgroEcology. 670-671.
  31. Shaharoona, B., Arshad, M., Zahir, Z.A. and Khalid, A. 2006. Performance of Pseudomonas spp. containing ACC-deaminase for improving growth and yield of maize (Zea mays) in the presence of nitrogenous fertilizer. Soil Biology and Biochemistry 38: 2971–2975.
  32. Valentine, A.J., Mortimer, P.E., Lintnaar, A. and Borgo, R. 2006. Drought responses of Arbuscular mycorrhizal grepvines. Symbiosis 41: 127-133.
  33. Wu, Q.S. and Xia, R.X. 2006. Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. Journal of Plant Physiology 163: 417-425.
  34. Wu, Q.S., Xia, R.X. and Zou, Y.N. 2008. Improved soil structure and citrus growth after inoculation with three arbuscular mycorrhizal fungi under drought stress. European Journal of Soil Biology 44: 122-128.
  35. Zabihi, H.R., Savaghebi, G.R., Khavazi, K. and Ganjali, A. 2009. Response of wheat growth and yield to application of plant growth promoting rhizobacteria at various levels of phosphorus fertilization. Iranian Journal of Agricultural Science, Skin 7, Number 1.
  36. Zaidi, A., Khan, M.S. and Aamil, M. 2003. Interactive effect of rhizotrophic microorganisms on yield and nutrient uptake of Chickpea (Cicer arietinum). European Journal of Agronomy 19: 15–21.
  37. Zaidi, A., Khan, M.S. and Aamil, M. 2004. Bioassociative effect of rhizospheric microorganisms on growth, yield and nutrient uptake of greengram. Journal of Plant Nutrition 27: 599-610.