پتانسیلها و چالش‌های کودهای زیستی در کشاورزی پایدار

نوع مقاله : مقاله مروری

نویسندگان

1 استاد پژوهشی موسسه تحقیقات خاک و آب کشور،

2 پژوهشگر پسادکترا، موسسه تحقیقات خاک و آب کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران.

چکیده

افزایش جهانی جمعیت منجر به افزایش تقاضا برای استفاده از کودهای شیمیایی در بخش کشاورزی شده که این امر تأثیرات منفی بر سلامت انسان و محیط زیست گذاشته است. لذا تمرکز تحقیقات به سمت کشاورزی پایدار و تولید محصولات سازگار با محیط زیست معطوف شده است. کودهای زیستی به عنوان یک راهکار پایدار در این زمینه، مزایای قابل توجهی دارند. این کودها حاوی مواد فعال از جمله باکتری‌های مفید ریزوسفری هستند که قابلیت‌های متنوعی نظیر تامین و افزایش فراهمی زیستی عناصر غذایی (مانند نیتروژن، فسفر، پتاسیم، آهن، روی)، تولید هورمون‌های تحریک‌کننده رشد، سیدروفورها و آنتی‌بیوتیک‌ها و غیره را دارند، که این امر به بهبود تنوع زیستی، حاصلخیزی خاک و افزایش تولید محصول کمک می‌کند. علاقه به استفاده از کودهای زیستی و پتانسیل آن‌ها برای کشاورزی پایدار در حال افزایش است. در این راستا، فرمولاسیون کودهای زیستی به منظور ایجاد یک محیط مناسب برای ریزجانداران و تضمین بقای آن‌ها پس از ورود به خاک ضروری است. انواع کودهای زیستی شامل پودری، گرانول‌ها، مایعات، محصور در پلیمر، بستر سیال خشک شده و ژل‌ها می‌باشد که هرکدام مزایا و چالش‌های خاص خود را دارند. این مقاله ضمن بررسی اجزای کودهای زیستی، بر اهمیت توسعه و تولید کودهای زیستی با کیفیت بالا برای افزایش اثربخشی و ایجاد اعتماد در میان کشاورزان تأکید می‌کند. آینده کودهای زیستی نیز با توجه به افزایش آگاهی عمومی نسبت به مزایای آن‌ها و تلاش‌های گسترده برای کاهش تأثیرات منفی کودهای شیمیایی، بسیار امیدوارکننده به نظر می‌رسد. با پیشرفت‌های فنآوری و نوآوری‌های مستمر، کودهای زیستی می‌توانند نقش محوری در کشاورزی پایدار و حفظ محیط زیست ایفا کنند.

کلیدواژه‌ها


عنوان مقاله [English]

Potentials and challenges of biofertilizers in sustainable agriculture

نویسندگان [English]

  • Alireza Fallah Nosratabad 1
  • Bahman Khoshru 2
1 Professor of Soil and Water Research Institute
2 Postdoctoral Researcher, Soil and Water Research Institute (SWRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
چکیده [English]

Background and Objectives: The rapid growth of the global population has intensified the demand for food production, which has consequently led to a significant increase in the use of chemical fertilizers in agriculture. While these fertilizers have been effective in boosting crop yields, their widespread and prolonged use has raised serious concerns due to their adverse effects on human health, soil quality, water resources, and overall environmental sustainability. These concerns include soil degradation, contamination of water bodies through runoff, and the disruption of natural ecosystems. In response, there has been a shift towards more sustainable agricultural practices that aim to minimize these negative impacts while maintaining or even enhancing agricultural productivity. Biofertilizers have emerged as a promising alternative in this context. Unlike chemical fertilizers, biofertilizers are composed of living microorganisms, primarily beneficial rhizospheric bacteria that can naturally enhance the availability of essential nutrients such as nitrogen, phosphorus, potassium, iron, and zinc to plants. Moreover, these microorganisms produce a range of bioactive compounds including growth-promoting hormones, siderophores, and antibiotics, which can stimulate plant growth, enhance resistance to pathogens, and improve soil health. The objective of this article is to provide a comprehensive review of the various components of biofertilizers, discussing their potential benefits, the challenges associated with their use, and their future prospects in the context of sustainable agriculture.

Materials and Methods: This study explores the different components of biofertilizers, focusing on their composition, properties, and applications. The types of biofertolizers reviewed include powders, granules, liquids, polymer-encapsulated forms, dried fluid beds, and gels. Each of these biofertolizers offers unique advantages and faces specific challenges that can impact the effectiveness of them. For instance, powder and granular biofertolizers are popular due to their ease of handling, transportation, and storage, but they may suffer from reduced microbial viability over time. Liquid biofertolizers, while offering a more immediate and homogenous distribution of nutrients, are more susceptible to contamination and require more stringent storage conditions. The article also discusses the critical aspects of biofertilizer production, including the selection of appropriate microbial strains based on their functionality and compatibility with target crops and soil types. The choice of carrier materials (organic, inorganic, liquid, or synthetic) plays a significant role in maintaining the viability and activity of the microorganisms. Additionally, the article examines the use of additives such as adhesives, stabilizers, and protective agents that can enhance the biofertolizer's performance. The production process involves several essential steps: the preparation and sterilization of carriers to eliminate contaminants, the inoculation and growth of microbial strains under controlled conditions, and the packaging of the final product to ensure shelf-life and ease of application.

Results: The findings from this review indicate that the choice of biofertilizer components greatly influences its effectiveness in the field. Powder and granular biofertilizers are found to be suitable for large-scale applications due to their stability and ease of use; however, they often face biofertilizers related to the survival rate of the beneficial microorganisms during storage and application. Liquid biofertilizers, on the other hand, provide a rapid supply of nutrients and are easier to apply in irrigation systems, but their efficacy can be compromised by contamination risks and the need for cold storage. More advanced biofertilizers, such as polymer-encapsulated, dried fluid bed, and gel forms, show promising results in protecting microorganisms from environmental stresses such as desiccation, and temperature fluctuations. These formulations can provide controlled release of nutrients and ensure longer shelf life. However, their production is often more complex and costly, requiring advanced technology and materials. The research highlights that an integrated approach combining multiple components or optimizing specific formulations based on local conditions and crop requirements could enhance the effectiveness and adoption of biofertilizers in sustainable agriculture.

Conclusion: The development and optimization of biofertilizer components are crucial for their success in sustainable agriculture. High-quality biofertilizers that ensure the survival and activity of beneficial microorganisms can significantly reduce the dependency on chemical fertilizers, thereby minimizing their negative environmental and health impacts. The growing interest in sustainable agricultural practices, coupled with increasing public awareness of the benefits of biofertilizers, suggests a promising future for these products. Further research and innovation are needed to address the challenges associated with their production, formulation, and application to ensure maximum efficacy and build trust among farmers. Technological advancements, such as improved encapsulation techniques and the use of novel carrier materials, are expected to enhance the performance of biofertilizers, making them a key component of future agricultural systems aimed at protecting soil and environmental health.

کلیدواژه‌ها [English]

  • Effectiveness
  • carrier
  • encapsulation
  • inoculant
  • soil health
  1. اخگر، ع.ر.، صادقی گوغری، م.، عباس زاده دهجی، پ.، صابری ریسه، ر. 1400. توانایی باکتری‌های سودوموناس‌ فلوروسنت در افزایش زیست فراهمی فسفر خاک و بررسی چند فرمولاسیون از جدایه‌های برتر. زیست شناسی خاک، جلد 9، شماره 2: 122-107.
  2. آرمنده، م.، محمودی، ن.، فلاح نصرت­آباد، ع.ر. 1397. جداسازی و شناسایی باکتری‌های حل­کننده فسفات از مزارع پرورش ماهیان گرمابی به­عنوان کاندیدای کود زیستی فسفره. نشریه علمی‌پژوهشی فیزیولوژی و بیوتکنولوژی آبزیان، 6(4): 121-140.
  3. اسدی رحمانی، ه.، خاوازی، ک.، اصغرزاده، ا.، رجالی، ف.، افشاری، میترا. 1391. کودهای زیستی در ایران: فرصتها و چالشها ، مجله پژوهشهای خاک، 26 (1): 87-78.
  4. اصغرزاده، ا.، ثقفی، ک.، فتاحی فر، ا.، جناقی، م.، علیزاده، ن. 1402. تأثیر باکتری‌های محرک رشد بر رشد هیف‌های قارچ دکمه‌ای و کنترل عوامل بیماری‌زا در شرایط آزمایشگاهی. زیست شناسی خاک، جلد 11، شماره 2: 154-139.
  5. امامی، ن.، حسنی، ا.، واعظی، ع.ر، بابااکبری ساری، م. 1400. بررسی تأثیر کشت چمن و کودهای زیستی بر برخی ویژگی‌های کیفی خاک. زیست شناسی خاک، جلد 9، شماره 1: 71-61.
  6. خاوازی، ک و ملکوتی م ج. 1381. ضرورت تولید صنعتی کودهای بیولوژیک در کشور، مجموعه مقالات. ناشر: آموزش کشاورزی وابسته به معاونت آموزشی وترویج کشاورزی (آموزش کشاورزی وابسته به دفتر خدمات تکنولوژی آموزشی وزارت جهاد کشاورزی)
  7. خسروی.، ه. 1402. تأثیر مایه‌زنی باکتری‌های محرک رشد گیاه بر شاخص‌های رشد گندم در شرایط آبیاری با آب شور. زیست شناسی خاک، جلد 11، شماره 1: 31-17.
  8. خوشرو، ب.، ساریخانی م ر. 1397. جداسازی و شناسایی باکتری‌های حل‌کننده فسفات مقاوم به دما برای استفاده در کود میکروبی فسفاته. مجله آب و خاک. جلد 32، شماره 1، 167- 155.
  9. خوشرو، ب.، ساریخانی، م.ر.، ریحانی‌تبار، ع.، اوستان، ش. و ملبوبی، م. ع. 1401. ارزیابی توان جدایه‌های ریزوسفری در انحلال Zn کم‌محول در شرایط درون‌شیشه‌ای و بررسی توانایی آنها در تأمین Zn گیاه ذرت، دانش کشاورزی وتولید پایدار، 32 (3): 183-199.
  10. ساریخانی، م. ر.، علی­اصغرزاد، ن و خوشرو، ب. 1396. بررسی اثربخشی باکتریهای حل‌کننده فسفات در قالب کود میکروبی فسفاته بر گیاه ذرت. مجله تحقیقات آب و خاک ایران. جلد 49، شماره 1، 81-71.
  11. شریعتی، ش.، علیخانی، ح و پوربابائی، ا. ع. 1392. بررسی پتانسیل کاربرد نانو ذره نانوپروسیل-1 (lus-1) به عنوان حامل باکتری حل کننده فسفات در فرایند تولید زادمایه نانوبیولوژیک". مجله زیست شناسی خاک، 1(2): 92-83.
  12. شریعتی، ش.، علیخانی، ح و شریعتی، ش. 1398. استفاده از زادمایه‌های باکتری سودوموناس فلورسنس محرک رشد گیاه در افزایش شاخص‌های رشد گیاه گندم. مجله تحقیقات کاربردی خاک، 7 (1): 176-165.
  13. علیخانی، ح.، شریعتی ش، اعتصامی ح و فلاح نصرت‌آباد، ع. 1401. ازتوباکتر به عنوان کود زیستی محرک رشد گیاه برنج". مجله تحقیقات آب و خاک ایران، 53 (3): 633-661.
  14. فلاح نصرت آباد.، ع.ر. 1401. بررسی روش‌های انحلال فسفات‌های نامحلول توسط ریزجانداران حل‌کننده فسفات. زیست شناسی خاک، جلد 10، شماره 1: 110-93.
  15. فلاح نصرت آباد، ع.، آرمنده، م. 1400. نقش ریزجانداران حل‌کننده فسفات در مدیریت فسفر در کشاورزی، موسسه تحقیقات خاک و آب کشور، انتشارات موسسه تحقیقات خاک و آب کشور.
  16. فلاح نصرت آباد، ع.، آفتاب‌طلب، ا و شریعتی، ش. 1399. بهبود خصوصیات فیزیکوشیمیایی خاک شور آهکی با استفاده تلفیقی از کود نانوبیولوژیک و کود دامی و اثربخشی بر عملکرد گیاه ذرت". مجله تحقیقات غلات، 10 (3): 271-259.
  17. مشیری، ف.، صفرپورحقیقی، ش.، بصیرت، م.، طهرانی، م. م.، هادی اسدی رحمانی، ه.، رجالی ف.، بلالی م. ر.، بازرگان ک. ، 1402. گزارش فنی برآورد کود مورد نیاز محصولات زراعی و باغی برای سال‌های زراعی 1399 - 1402، انتشارات موسسه تحقیقات خاک و آب کشور، کرج ایران.
  18. Abd El-Fattah, D.A., Eweda, W.E., Zayed, M.S. and Hassanein, M.K., 2013. Effect of carrier materials, sterilization method, and storage temperature on survival and biological activities of Azotobacter chroococcum inoculant. Annals of Agricultural Sciences, 58(2), pp.111-118.
  19. Ahemad, M. and Khan, M.S., 2012. Effect of fungicides on plant growth promoting activities of phosphate solubilizing Pseudomonas putida isolated from mustard (Brassica compestris) rhizosphere. Chemosphere, 86(9), pp.945-950.
  20. Aksani, D., Ginting, R.C.B. and Purwani, J., 2021, February. The assay of carrier material and bacteria isolate formula as a biofertilizer on soybean in Inceptisols from West Java. In IOP Conference Series: Earth and Environmental Science (Vol. 648, No. 1, p. 012193). IOP Publishing.
  21. Akter, T., Shah, S.T., Al Mamun, M.A., Bari, M.L., Begum, S., Rahman, N. and Miah, M.I., 2023. Costeffective formulation of bio-fertilizer using agricultural residues as carriers and determination of shelflife of bio-fertilizer inoculants. Dhaka University Journal of Biological Sciences, 32(2), pp.189-199.
  22. Ali, S.M., Hamza, M.A., Amin, G., Fayez, M., El-Tahan, M., Monib, M. and Hegazi, N.A., 2005. Production of biofertilizers using baker's yeast effluent and their application to wheat and barley grown in north Sinai deserts: (Produktion von Biodüngern unter Verwendung von Backhefeabwasser und ihre Anwendung zu Weizen-und Gerstenanbau im Norden der Sinai-Wüste). Archives of Agronomy and Soil Science, 51(6), pp.589-604.
  23. Alley, M.M. and B. Vanlauwe, The role of fertilizers in integraded plant nutrient management. : Citeseer, 2009.
  24. Allouzi, M.M.A., Allouzi, S.M.A., Keng, Z.X., Supramaniam, C.V., Singh, A. and Chong, S., 2022. Liquid biofertilizers as a sustainable solution for agriculture. Heliyon, 8(12).
  25. Aloo, B.N., Mbega, E.R., Makumba, B.A. and Tumuhairwe, J.B., 2022. Effects of carrier materials and storage temperatures on the viability and stability of three biofertilizer inoculants obtained from potato (Solanum tuberosum L.) rhizosphere. Agriculture, 12(2), p.140.
  26. Arora, N.K., Khare, E. and Maheshwari, D.K., 2011. Plant growth promoting rhizobacteria: constraints in bioformulation, commercialization, and future strategies. Plant growth and health promoting bacteria, pp.97-116.
  27. Arpitha, P.S. and Brahmaprakash, G.P., 2016. Evaluation of different packaging materials for microbial inoculants. Journal of Pure and Applied Microbiology, 10(2), pp.1131-1135.
  28. Atieno, M., Herrmann, L., Okalebo, R. and Lesueur, D., 2012. Efficiency of different formulations of Bradyrhizobium japonicum and effect of co-inoculation of Bacillus subtilis with two different strains of Bradyrhizobium japonicum. World Journal of Microbiology and Biotechnology, 28, pp.2541-2550.
  29. Bangash, N., Mahmood, S., Akhtar, S., Hayat, M.T., Gulzar, S. and Khalid, A., 2021. Formulation of biofertilizer for improving growth and yield of wheat in rain dependent farming system. Environmental Technology & Innovation, 24, p.101806.
  30. Bashan, Y., de-Bashan, L.E., Prabhu, S.R. and Hernandez, J.P., 2014. Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant and soil, 378, pp.1-33.
  31. Bashan, Y., Hernandez, J.P., Leyva, L.A. and Bacilio, M., 2002. Alginate microbeads as inoculant carriers for plant growth-promoting bacteria. Biology and Fertility of Soils, 35, pp.359-368.
  32. Bazilah, A.B.I., Sariah, M., Abidin, M.A.Z. and Yasmeen, S., 2011. Influence of carrier materials and storage temperature on survivability of Rhizobial inoculants. Asian J Plant Sci, 10, pp.331-337.
  33. Behl, K., Jaiswal, P. and Pabbi, S., 2024. Recent Advances in Microbial and Nano-Formulations for Effective Delivery and Agriculture Sustainability. Biocatalysis and Agricultural Biotechnology, p.103180.
  34. Bharti, N. and Suryavanshi, M., 2021. Quality control and regulations of biofertilizers: Current scenario and future prospects. In Biofertilizers (pp. 133-141). Woodhead Publishing.
  35. Bharti, N., Sharma, S.K., Saini, S., Verma, A., Nimonkar, Y. and Prakash, O., 2017. Microbial plant probiotics: problems in application and formulation. Probiotics and plant health, pp.317-335.
  36. Brahmaprakash, G.P., Sahu, P.K., Lavanya, G., Gupta, A., Nair, S.S. and Gangaraddi, V., 2020. Role of additives in improving efficiency of bioformulation for plant growth and development. In Frontiers in soil and environmental microbiology (pp. 1-10). CRC Press.
  37. Çakmakçı, R., 2019. A review of biological fertilizers current use, new approaches, and future perspectives. International Journal of Innovative Studies in Sciences and Engineering Technology, 5(7), 83-92.
  38. Catroux, G., Hartmann, A. and Revellin, C., 2001. Trends in rhizobial inoculant production and use. Plant and soil, 230(1), pp.21-30.
  39. Chakraborty, T. and Akhtar, N., 2021. Biofertilizers: Characteristic features and applications. Biofertilizers: Study and Impact, pp.429-489.
  40. Chandran, M., Manisha, A. and Subashini, A., 2014. Production of phosphate biofertilizer using lignocellulosic waste as carrier material. Asian Journal of Chemistry, 26(7), p.2065.
  41. Chaudhary, T., Dixit, M., Gera, R., Shukla, A.K., Prakash, A., Gupta, G. and Shukla, P., 2020. Techniques for improving formulations of bioinoculants. 3 Biotech, 10, pp.1-9.
  42. Chromkaew, Y., Kaeomuangmoon, T., Mawan, N., Mukjang, N. and Khongdee, N., 2023. Is coconut coir dust an efficient biofertilizer carrier for promoting coffee seedling growth and nutrient uptake?. PeerJ, 11, p.e15530.
  43. Chuen, N.L., Ghazali, M.S.M., Hassim, M.F.N., Bhat, R. and Ahmad, A., 2021. Agro-waste-derived silica nanoparticles (Si-NPs) as biofertilizer. In Valorization of agri-food wastes and by-products (pp. 881-897). Academic Press.
  44. Clayton, G.W., Rice, W.A., Lupwayi, N.Z., Johnston, A.M., Lafond, G.P., Grant, C.A. and Walley, F., 2004. Inoculant formulation and fertilizer nitrogen effects on field pea: Nodulation, N2 fixation and nitrogen partitioning. Canadian Journal of Plant Science, 84(1), pp.79-88.
  45. Deaker, R., Roughley, R.J. and Kennedy, I.R., 2004. Legume seed inoculation technology—a review. Soil biology and biochemistry, 36(8), pp.1275-1288.
  46. Delangiz, N., Khoshru, B., Asgari Lajayer, B., Ghorbanpour, M. and Kazemalilou, S., 2020. Molecular mechanisms of heavy metal tolerance in plants. Cellular and Molecular Phytotoxicity of Heavy Metals, pp.125-136.
  47. Dellagnezze, B.M. and Sierra-Garcia, I.N., 2023. Immobilization of microbial inoculants for improving soil nutrient bioavailability. In Microbial Inoculants (pp. 161-181). Academic Press.
  48. Denton, M., Farquharson, E., Ryder, M., Rathjen, J. and Ballard, R., 2018. Best options for optimal performance from rhizobial inoculants. GRDC update, Adelaide.
  49. Dey, A., 2021. Liquid biofertilizers and their applications: An overview. Environmental and Agricultural Microbiology: Applications for Sustainability, pp.275-292.
  50. Dineshkumar, R., Kumaravel, R., Gopalsamy, J., Sikder, M.N.A. and Sampathkumar, P., 2018. Microalgae as bio-fertilizers for rice growth and seed yield productivity. Waste and biomass valorization, 9, pp.793-800.
  51. Dini, I.R. and Wulandari, M., 2022, June. Application of Bacillus cereus Biofertilizer Formulation of Soybean (Glycine max L. Merril) Growth and Yield Support Sustainable Agriculture on Peatlands. In IOP Conference Series: Earth and Environmental Science (Vol. 977, No. 1, p. 012022). IOP Publishing.
  52. Edgerton, M.D.J.P.p., Increasing crop productivity to meet global needs for
    feed
    , food, and fuel. 149(1): p. 7–13, 2009.
  53. Egamberdieva, D., Kucharova, Z., Davranov, K., Berg, G., Makarova, N., Azarova, T., Chebotar, V., Tikhonovich, I., Kamilova, F., Validov, S.Z. and Lugtenberg, B., 2011. Bacteria able to control foot and root rot and to promote growth of cucumber in salinated soils. Biology and fertility of soils, 47, pp.197-205.
  54. Egamberdiyeva, D., 2007. The growth and nutrient uptake of maize inoculated with plant growth promoting bacteria affected by different soil types. Applied Soil Ecology, 36, pp.184-189.
  55. Elmerich, C. and Newton, W.E. eds., 2007. Associative and endophytic nitrogen-fixing bacteria and cyanobacterial associations (Vol. 5). Dordrecht: Springer.
  56. Elsakhawy, T., Ghazi, A. and Abdel-Rahman, M.A., 2021. Developing liquid rhizobium inoculants with enhanced long-term survival, storage stability, and plant growth promotion using ectoine additive. Current Microbiology, 78, pp.282-291.
  57. Fages, J., 1990. An optimized process for manufacturing an Azospirillum inoculant for crops. Applied microbiology and biotechnology, 32, pp.473-478.
  58. Fasusi, O.A., Cruz, C. and Babalola, O.O., 2021. Agricultural Sustainability: Microbial Biofertilizers in Rhizosphere Management. Agriculture 2021, 11, 163.
  59. Freyer, B., Ellssel, P., Nyakanda, F. and Saussure, S., 2024. Exploring the off-farm production, marketing and use of organic and biofertilisers in Africa: A scoping study. Report to the European Commission. DeSIRA-LIFT European Union.
  60. Glaser, B., 2007. Prehistorically modified soils of central Amazonia: a model for sustainable agriculture in the twenty-first century. Philosophical Transactions of the Royal Society B: Biological Sciences, 362(1478), pp.187-196.
  61. Goenadi, D.H., Mustafa, A.B. and Santi, L.P., 2018, August. Bio-organo-chemical fertilizers: a new prospecting technology for improving fertilizer use efficiency (FUE). In IOP Conference Series: Earth and Environmental Science (Vol. 183, No. 1, p. 012011). IOP Publishing.
  62. Gopi, G.K., Meenakumari, K.S., Anith, K.N., Nysanth, N.S. and Subha, P., 2020. Application of liquid formulation of a mixture of plant growth promoting rhizobacteria helps reduce the use of chemical fertilizers in Amaranthus (Amaranthus tricolor L.). Rhizosphere, 15, p.100212.
  63. Graham-Weiss, L., Bennett, M.L. and Paau, A.S., 1987. Production of bacterial inoculants by direct fermentation on nutrient-supplemented vermiculite. Applied and environmental microbiology, 53(9), pp.2138-2141.
  64. Hale, L., Luth, M. and Crowley, D., 2015. Biochar characteristics relate to its utility as an alternative soil inoculum carrier to peat and vermiculite. Soil Biology and Biochemistry, 81, pp.228-235.
  65. Hale, L., Luth, M., Kenney, R. and Crowley, D., 2014. Evaluation of pinewood biochar as a carrier of bacterial strain Enterobacter cloacae UW5 for soil inoculation. Applied Soil Ecology, 84, pp.192-199.
  66. Hamed, R., Jodeh, S. and Alkowni, R., 2024. Nano bio fertilizer capsules for sustainable agriculture. Scientific Reports, 14(1), 13646.
  67. Hassan, T.U. and Bano, A., 2016. Biofertilizer: a novel formulation for improving wheat growth, physiology and yield. Pak. J. Bot, 48(6), pp.2233-2241.
  68. He, D. and Wan, W., 2021. Phosphate-solubilizing bacterium Acinetobacter pittii gp-1 affects rhizosphere bacterial community to alleviate soil phosphorus limitation for growth of soybean (Glycine max). Frontiers in Microbiology, 12, p.737116. https://doi.org/10.3389/fmicb.2021.737116.
  69. He, Y., Wu, Z., Tu, L., Han, Y., Zhang, G. and Li, C., 2015. Encapsulation and characterization of slow-release microbial fertilizer from the composites of bentonite and alginate. Applied Clay Science, 109, pp.68-75.
  70. Hegde, S.V. and Brahmaprakash, G.P., 1992. A dry granular inoculant of Rhizobium for soil application. Plant and Soil, 144, pp.309-311.
  71. Hernández-Álvarez, C., Peimbert, M., Rodríguez-Martin, P., Trejo-Aguilar, D. and Alcaraz, L.D., 2023. A study of microbial diversity in a biofertilizer consortium. Plos one, 18(8), p.e0286285.
  72. Herridge, D.F., 2008. Inoculation technology for legumes. In Nitrogen-fixing leguminous symbioses (pp. 77-115). Dordrecht: Springer Netherlands.
  73. Herrmann, L. and Lesueur, D., 2013. Challenges of formulation and quality of biofertilizers for successful inoculation. Applied microbiology and biotechnology, 97(20), pp.8859-8873.
  74. Hoe, T.K., Sarmidi, M.R., Alwee, S.S.R.S. and Zakaria, Z.A., 2016. Recycling of oil palm empty fruit bunch as potential carrier for biofertilizer formulation. Jurnal Teknologi, 78(2).
  75. Jain, D., Sharma, J., Kaur, G., Bhojiya, A.A., Chauhan, S., Sharma, V., Suman, A., Mohanty, S.R. and Maharjan, E., 2021. Phenetic and molecular diversity of nitrogen fixating plant growth promoting Azotobacter isolated from semiarid regions of India. BioMed Research International, 2021(1), p.6686283.
  76. Jaiswal, A., Koli, D.K., Pabbi, S., Priya, H., Kumar, A., Mishra, R., Koli, G.K. and Dhaked, B.S., 2022. Effect of protective polymers and storage temperatures on shelf life of cyanobacterial liquid formulation. Indian Journal of Ecology, 49(4), pp.1517-1525.
  77. Jannin, V., Musakhanian, J. and Marchaud, D., 2008. Approaches for the development of solid and semi-solid lipid-based formulations. Advanced drug delivery reviews, 60(6), pp.734-746.
  78. Jha, C.K. and Saraf, M., 2012. Evaluation of multispecies plant-growth-promoting consortia for the growth promotion of Jatropha curcas L. Journal of plant growth regulation, 31, pp.588-598.
  79. John, R.P., Tyagi, R.D., Brar, S.K., Surampalli, R.Y. and Prévost, D., 2011. Bio-encapsulation of microbial cells for targeted agricultural delivery. Critical reviews in biotechnology, 31(3), pp.211-226.
  80. Joshi, A., Kumar, S. and Kumar, V., 2021. A brief description on biofertilizers. ACADEMICIA: An International Multidisciplinary Research Journal, 11(10), pp.90-96.
  81. Joshi, S.K. and Gauraha, A.K., 2022. Global biofertilizer market: Emerging trends and opportunities. Trends of applied microbiology for sustainable economy, pp.689-697.
  82. Kamath, A., Shukla, A., Saiyed, T., Bhatt, S., Rathod, H., Makwana, V., Soni, D., Banerjee, S. and Patel, D., 2023. Bioinoculants: the agrarian avengers. Symbiosis, 91(1), pp.151-166.
  83. Kaur, H., Athwal, S. and Garg, K., 2024. Futuristic Approaches in Biofertilizer Industry: Challenges, Opportunities, and Future Directions. Metabolomics, Proteomics and Gene Editing Approaches in Biofertilizer Industry: Volume II, pp.15-33.
  84. Kaur, R. and Kaur, S., 2023. Carrier-Based Biofertilizers. In Metabolomics, Proteomes and Gene Editing Approaches in Biofertilizer Industry (pp. 57-75). Singapore: Springer Nature Singapore.
  85. Khan, M., 2023. Formulation of Carrier-based Biofertilizer for Improvement of Growth and Physiology of Zea mays L (Doctoral dissertation, Quaid I Azam university Islamabad).
  86. Khan, S.T., 2022. Consortia-based microbial inoculants for sustaining agricultural activities. Applied Soil Ecology, 176, p.104503.
  87. Khoshru, B., Mitra, D., Joshi, K., Adhikari, P., Rion, S., Fadiji, A., Alizadeh, M., Priyadarshini, A., Senapati, A., Reza, M. and Panneerselvam, P., 2023. Decrypting the multi-functional biological activators and inducers of defense responses against biotic stresses in plants. Helidon 9 (3), 1145-1168.
  88. Khoshru, B., Mitra, D., Mahakur, B., Sarikhani, M.R., Mondal, R., Verma, D. and Pant, K., 2020. Role of soil rhizobacteria in utilization of an indispensable micronutrient zinc for plant growth promotion. Crit. Rev, 21, pp.4644-4654.
  89. Khosravi, H., Khoshru, B., Nosratabad, A.F. and Mitra, D., 2024. Exploring the landscape of biofertilizers containing plant growth-promoting rhizobacteria in Iran: progress and research prospects. Current Research in Microbial Sciences, p.100268.
  90. Kim, H.L., Weon, H.Y., Sohn, B.K., Choi, Y.H. and Kwack, Y.B., 2009. Microbial Community Changes in the Soil of Plastic Film House as Affected by Anaerobic Fermentation of Rice Bran or Wheat Bran. Korean Journal of Soil Science and Fertilizer, 42(5), pp.341-347.
  91. Kour, D., Rana, K.L., Yadav, A.N., Yadav, N., Kumar, M., Kumar, V., Vyas, P., Dhaliwal, H.S. and Saxena, A.K., 2020. Microbial biofertilizers: Bioresources and eco-friendly technologies for agricultural and environmental sustainability. Biocatalysis and Agricultural Biotechnology, 23, p.101487.
  92. Kulkarni, K., Bhogale, G.M. and Nalawade, R., 2018. Adsorptive removal of fluoride from water samples using Azospirillum biofertilizer and lignite. Korean Journal of Chemical Engineering, 35, pp.153-163.
  93. Kumar, A., Saharan, B.S., Parshad, J., Gera, R., Choudhary, J. and Yadav, R., 2024. Revolutionizing Indian agriculture: the imperative of advanced biofertilizer technologies for sustainability. Discover Agriculture, 2(1), p.24. https://doi.org/10.1007/s44279-024-00037-y.
  94. Kumar, D., Kumar, R., Sakshi, Deepshikha and Kumar, A., 2024. Commercialization and Market Perspectives of Biofertilizers Through Advanced Approaches. In Metabolomics, Proteomics and Gene Editing Approaches in Biofertilizer Industry: Volume II (pp. 339-357). Singapore: Springer Nature Singapore.
  95. Kumari, S. and Rani, N., 2024. Novel cereal bran based low-cost liquid medium for enhanced growth, multifunctional traits and shelf life of consortium biofertilizer containing Azotobacter chroococcum, Bacillus subtilis and Pseudomonas sp. Journal of Microbiological Methods, p.106952.
  96. Kumawat, K.C., Singh, I., Nagpal, S., Sharma, P., Gupta, R.K. and Sirari, A., 2022. Co-inoculation of indigenous Pseudomonas oryzihabitans and Bradyrhizobium sp. modulates the growth, symbiotic efficacy, nutrient acquisition, and grain yield of soybean. Pedosphere, 32(3), pp.438-451. https://doi.org/10.1016/S1002-0160(21)60085-1.
  97. Lai, J., Azad, A.K., Sulaiman, W.M.A.W., Kumarasamy, V., Subramaniyan, V. and Alshehade, S.A., 2024. Alginate-based encapsulation fabrication technique for drug delivery: an updated review of particle type, formulation technique, pharmaceutical ingredient, and targeted delivery system. Pharmaceutics, 16(3), p.370.
  98. Lavanya, G., Sahu, P.K. and Brahmaprakash, G.P., 2016. Survival and effectiveness of fluid bed dried formulation of microbial consortium on cowpea (Vigna unguiculata L.). Environment and Ecology, 34(4D), pp.2440-2444.
  99. Li, J., Wang, H., Wang, L., Yu, D. and Zhang, X., 2023. Stabilization effects of saccharides in protein formulations: A review of sucrose, trehalose, cyclodextrins and dextrans. European Journal of Pharmaceutical Sciences, p.106625.
  100. Lodhi, R.S., Das, S. and Das, P., 2023. Recent Advances in Polymer Hydrogels for Agricultural Applications. Novel Polymeric Materials for Environmental Applications, pp.109-177.
  101. Lu, S., Orr, J.F. and Buchanan, F.J., 2003. The influence of inert packaging on the shelf ageing of gamma-irradiation sterilised ultra-high molecular weight polyethylene. Biomaterials, 24(1), pp.139-145.
  102. Mahapatra, D.M., Satapathy, K.C. and Panda, B., 2022. Biofertilizers and nanofertilizers for sustainable agriculture: Phycoprospects and challenges. Science of the total environment, 803, p.149990.
  103. Majeed, Z., Ramli, N.K., Mansor, N. and Man, Z., 2015. A comprehensive review on biodegradable polymers and their blends used in controlled-release fertilizer processes. Reviews in Chemical Engineering, 31(1), pp.69-95.
  104. Malusá, E., Sas-Paszt, L. and Ciesielska, J.J.T.S.W.J., 2012. Technologies for beneficial microorganisms inocula used as biofertilizers. The scientific world journal, 2012(1), p.491206.
  105. Martínez-Cano, B., Mendoza-Meneses, C.J., García-Trejo, J.F., Macías-Bobadilla, G., Aguirre-Becerra, H., Soto-Zarazúa, G.M. and Feregrino-Pérez, A.A., 2022. Review and perspectives of the use of alginate as a polymer matrix for microorganisms applied in agro-industry. Molecules, 27(13), p.4248.
  106. Martínez-Cano, B., Mendoza-Meneses, C.J., García-Trejo, J.F., Macías-Bobadilla, G., Aguirre-Becerra, H., Soto-Zarazúa, G.M. and Feregrino-Pérez, A.A., 2022. Review and perspectives of the use of alginate as a polymer matrix for microorganisms applied in agro-industry. Molecules, 27(13), p.4248.
  107. McInnis, E., 2023. Exploring plastic waste identification and sorting through NIR spectroscopy and automated colour sorting.
  108. Meftah Kadmiri, I., El Mernissi, N., Azaroual, S.E., Mekhzoum, M.E.M., Qaiss, A.E.K. and Bouhfid, R., 2021. Bioformulation of microbial fertilizer based on clay and alginate encapsulation. Current microbiology, 78(1), pp.86-94.
  109. Mikos-Szymańska, M., Schab, S., Rusek, P., Borowik, K., Bogusz, P. and Wyzińska, M., 2019. Preliminary study of a method for obtaining Brown coal and biochar based granular compound fertilizer. Waste and Biomass Valorization, 10, pp.3673-3685.
  110. Mishra, B.K. and Dadhich, S.K., 2010. Methodology of nitrogen biofertilizer production. Adv. Dev. Res, 1(1), pp.3-6.
  111. Mitra, D., Adhikari, P., Djebaili, R., Thathola, P., Joshi, K., Pellegrini, M., Adeyemi, N.O., Khoshru, B., Kaur, K., Priyadarshini, A. and Senapati, A., 2023. Biosynthesis and characterization of nanoparticles, its advantages, various aspects and risk assessment to maintain the sustainable agriculture: Emerging technology in modern era science. Plant Physiology and Biochemistry, 196, pp.103-120.
  112. Moradi, S., Khoshru, B., Mitra, D., Mahakur, B., Das Mohapatra, P.K., Asgari Lajayer, B. and Ghorbanpour, M., 2021. Transcriptomics analyses and the relationship between plant and plant growth-promoting rhizobacteria (PGPR). Omics science for rhizosphere biology, pp.89-111.
  113. Nagendra Prasad, M.N., Sanjay, K.R., Shravya Khatokar, M., Vismaya, M.N. and Nanjunda Swamy, S., 2011. Health benefits of rice bran-a review. J Nutr Food Sci, 1(3), pp.1-7.
  114. Nehra, V. and Choudhary, M., 2015. A review on plant growth promoting rhizobacteria acting as bioinoculants and their biological approach towards the production of sustainable agriculture. Journal of Applied and Natural Science, 7(1), pp.540-556.
  115. Novinscak, A. and Filion, M., 2020. Long term comparison of talc-and peat-based phytobeneficial Pseudomonas fluorescens and Pseudomonas synxantha bioformulations for promoting plant growth. Frontiers in Sustainable Food Systems, 4, p.602911.
  116. Nussinovitch, A. and Nussinovitch, A., 2010. Beads and special applications of polymers for agricultural uses. Polymer macro-and micro-gel beads: fundamentals and applications, pp.231-253.
  117. Odoh, C.K., Sam, K., Zabbey, N., Eze, C.N., Nwankwegu, A.S., Laku, C. and Dumpe, B.B., 2020. Microbial consortium as biofertilizers for crops growing under the extreme habitats. Plant microbiomes for sustainable agriculture, pp.381-424.
  118. Pallavi, Chandra, D. and Sharma, A.K., 2017. Commercial microbial products: exploiting beneficial plant-microbe interaction. Plant-Microbe Interactions in Agro-Ecological Perspectives: Volume 2: Microbial Interactions and Agro-Ecological Impacts, pp.607-626.
  119. PAYGOND, S.Y., UMASHANKAR, N., RAGHU, H., NAIK, L.K., BENHERLAL, P., SULTHANA, J.A., KUMAR, N.L. and SEENAPPA, C., 2024. Assessing the Impact of Corn-Rind-Carrier Based Biofertilizer on the Growth and Yield of Capsicum (Capsicum annuum L.). Mysore Journal of Agricultural Sciences, 58(1).
  120. Prasanna, R., Gupta, H., Yadav, V.K., Gupta, K., Buddhadeo, R., Gogoi, R., Bharti, A., Mahawar, H. and Nain, L., 2020. Prospecting the promise of cyanobacterial formulations developed using soil-less substrates as carriers. Environmental technology & innovation, 18, p.100652.
  121. Prasanna, R., Gupta, H., Yadav, V.K., Gupta, K., Buddhadeo, R., Gogoi, R., Bharti, A., Mahawar, H. and Nain, L., 2020. Prospecting the promise of cyanobacterial formulations developed using soil-less substrates as carriers. Environmental Technology & Innovation, 18, p.100652.
  122. Priyadharshini, C., Gnanachitra, M., Balachandar, D. and Jayanthi, D., 2022. Assessment of shelf-life and efficacy of the seed-coating delivery system of biofertilizers in maize. International Journal of Plant & Soil Science, 34(22), pp.548-558.
  123. Pub Med, 2024. https://pubmed.ncbi.nlm.nih.gov/?term=biofertilizer&filter=years.2009-2024
  124. Puwanto, Samosir, F.A., Yuwariah, Y., Sumadi and Simarmata, T., 2019. Viability of Pseudomonas plecoglossicida and Rhizobium sp. LM-5 as liquid bacterial fertilizers in various formulated carriers. Plant Growth Promoting Rhizobacteria (PGPR): Prospects for Sustainable Agriculture, pp.185-193.
  125. Qi XiLiang, Q.X., Su XiaoFeng, S.X., Guo HuiMing, G.H., Qi JunCang, Q.J. and Cheng HongMei, C.H., 2016. VdThit, a thiamine transport protein, is required for pathogenicity of the vascular pathogen Verticillium dahliae.
  126. Quynh, T.M., Thuy, N.T.T., An, T.X., Thom, N.T., Binh, N.V., Diep, T.B., Ha, N.T. and Luong, L.T.M., 2019. A beads-based biofertilizer containing Bacillus megaterium for cabbage. Vietnam Journal of Science, Technology and Engineering, 61(4), pp.53-57.
  127. Rai, P. and Nayak, S., 2021. Development of a biofertilizer for viticulture. Agricultural Research Journal, 58(1).
  128. Rai, P.K., Rai, A., Sharma, N.K., Singh, T. and Kumar, Y., 2023. Limitations of biofertilizers and their revitalization through nanotechnology. Journal of Cleaner Production, p.138194.
  129. Rakshit, A., Meena, V.S., Parihar, M., Singh, H.B. and Singh, A.K. eds., 2021. Biofertilizers: Volume 1: Advances in Bio-inoculants. Woodhead Publishing.
  130. Rani, P., Rajput, S., Thakur, B. and Kaur, S., 2023. Immobilization and Co-mobilization: An Unexploited Biotechnological Tool for Enhancing Efficiency of Biofertilizers. In Metabolomics, Proteomes and Gene Editing Approaches in Biofertilizer Industry (pp. 219-236). Singapore: Springer Nature Singapore.
  131. Rani, P., Rajput, S., Thakur, B. and Kaur, S., 2023. Immobilization and Co-mobilization: An Unexploited Biotechnological Tool for Enhancing Efficiency of Biofertilizers. In Metabolomics, Proteomes and Gene Editing Approaches in Biofertilizer Industry (pp. 219-236). Singapore: Springer Nature Singapore.
  132. Rawat, P., Sharma, A., Shankhdhar, D. and Shankhdhar, S.C., 2022. Improvement of phosphorus uptake, phosphorus use efficiency, and grain yield of upland rice (Oryza sativa L.) in response to phosphate-solubilizing bacteria blended with phosphorus fertilizer. Pedosphere, 32(5), pp.752-763. (https://doi.org/10.1016/j.pedsph.2022.06.005).
  133. Rekha, P.D., Lai, W.A., Arun, A.B. and Young, C.C., 2007. Effect of free and encapsulated Pseudomonas putida CC-FR2-4 and Bacillus subtilis CC-pg104 on plant growth under gnotobiotic conditions. Bioresource technology, 98(2), pp.447-451.
  134. Richa, 2023. Liquid Bio-Fertilizers: Prospects and Challenges. Metabolomics, Proteomes and Gene Editing Approaches in Biofertilizer Industry, pp.77-99.
  135. Rieley, J. and Page, S., 2016. Tropical peatland of the world. Tropical peatland ecosystems, pp.3-32.
  136. Rose, M.T., Deaker, R., Potard, S., Tran, C.K.T., Vu, N.T. and Kennedy, I.R., 2011. The survival of plant growth promoting microorganisms in peat inoculant as measured by selective plate counting and enzyme-linked immunoassay. World Journal of Microbiology and Biotechnology, 27, pp.1649-1659.
  137. Sahu, P.K. and Brahmaprakash, G.P., 2016. Formulations of biofertilizers–approaches and advances. Microbial inoculants in sustainable agricultural productivity: Vol. 2: Functional Applications, pp.179-198.
  138. Sahu, P.K., Gupta, A., Singh, M., Mehrotra, P. and Brahmaprakash, G.P., 2018. Bioformulation and fluid bed drying: A new approach towards an improved biofertilizer formulation. Eco-friendly agro-biological techniques for enhancing crop productivity, pp.47-62.
  139. Saif, S., Abid, Z., Ashiq, M.F., Altaf, M. and Ashraf, R.S., 2021. Biofertilizer formulations. Biofertilizers: Study and Impact, pp.211-256.
  140. Sakpirom, J., Nunkaew, T., Khan, E. and Kantachote, D., 2021. Optimization of carriers and packaging for effective biofertilizers to enhance Oryza sativa L. growth in paddy soil. Rhizosphere, 19, p.100383.
  141. Salih, S.E., Hamood, A.F. and Abd Alsalam, A.H., 2013. Comparison of the characteristics of LDPE: PP and HDPE: PP polymer blends. Modern Applied Science, 7(3), p.33.
  142. Schoebitz, M., López, M.D. and Roldán, A., 2013. Bioencapsulation of microbial inoculants for better soil–plant fertilization. A review. Agronomy for sustainable development, 33, pp.751-765.
  143. Schoebitz, M., Simonin, H. and Poncelet, D., 2012. Starch filler and osmoprotectants improve the survival of rhizobacteria in dried alginate beads. Journal of microencapsulation, 29(6), pp.532-538.
  144. Seenivasagan, R. and Babalola, O.O., 2021. Utilization of microbial consortia as biofertilizers and biopesticides for the production of feasible agricultural product. Biology, 10(11), p.1111.
  145. Shanmugam, V., Kanoujia, N., Singh, M., Singh, S. and Prasad, R., 2011. Biocontrol of vascular wilt and corm rot of gladiolus caused by Fusarium oxysporum f. sp. gladioli using plant growth promoting rhizobacterial mixture. Crop protection, 30(7), pp.807-813.
  146. Sharma, P., Bano, A., Singh, S.P. and Tong, Y.W., 2023. Microbial inoculants: Recent progress in formulations and methods of application. Microbial Inoculants, pp.1-28.
  147. Silindir, M. and Özer, A.Y., 2009. Sterilization methods and the comparison of E-beam sterilization with gamma radiation sterilization. Fabad Journal of Pharmaceutical Sciences, 34(1), p.43.
  148. Singh, S.K., Bhople, N.D., Tomar, A., Savita, S. and Rana, M., 2018. Progress and potential of biofertilization in contemporary production practices of sustainable agriculture.
  149. Singleton, P., Keyser, H. and Sande, E., 2002. Development and evaluation of liquid inoculants. Inoculants and nitrogen fixation of legumes in Vietnam, 109, pp.52-66.
  150. Sivaram, A.K., Abinandan, S., Chen, C., Venkateswartlu, K. and Megharaj, M., 2023. Microbial inoculant carriers: Soil health improvement and moisture retention in sustainable agriculture. Advances in Agronomy, 180, pp.35-91.
  151. Spadari, C.D.C., Lopes, L.B. and Ishida, K., 2017. Potential use of alginate-based carriers as antifungal delivery system. Frontiers in microbiology, 8, p.241872.
  152. Sriram, S., Roopa, K.P. and Savitha, M.J., 2011. Extended shelf-life of liquid fermentation derived talc formulations of Trichoderma harzianum with the addition of glycerol in the production medium. Crop protection, 30(10), pp.1334-1339.
  153. Stella, D. and Sivasakthivelan, P., 2009. Effect of different organic amendments addition into Azospirillum bioinoculant with lignite as carrier material. Res. Intl, 2(4), pp.229-232.
  154. Stevenson, L.E.O., Phillips, F., O'sullivan, K. and Walton, J., 2012. Wheat bran: its composition and benefits to health, a European perspective. International journal of food sciences and nutrition, 63(8), pp.1001-1013.
  155. Subramanyam, B., Shankarappa, T.H. and Prasad, B.D.N., 2019. Effect of alginate based microbial consortial formulation on growth of corn. Indian Journal of Ecology, 46(Special Issue 7), pp.96-100.
  156. Suman, A., Verma, P., Yadav, A.N., Srinivasamurthy, R., Singh, A. and Prasanna, R., 2016. Development of hydrogel based bio-inoculant formulations and their impact on plant biometric parameters of wheat (Triticum aestivum L.). Int J Curr Microbiol Appl Sci, 5(3), pp.890-901.
  157. Surendra Gopal, K. and Baby, A., 2016. Enhanced shelf life of Azospirillum and PSB through addition of chemical additives in liquid formulations. Int J Sci Environ Technol, 5(4), pp.2023-2029.
  158. Tang, Y., Wang, X., Yang, Y., Gao, B., Wan, Y., Li, Y.C. and Cheng, D., 2017. Activated-lignite-based super large granular slow-release fertilizers improve apple tree growth: synthesis, characterizations, and laboratory and field evaluations. Journal of agricultural and food chemistry, 65(29), pp.5879-5889.
  159. Taurian, T., Anzuay, M.S., Angelini, J.G., Tonelli, M.L., Ludueña, L., Pena, D., Ibáñez, F. and Fabra, A., 2010. Phosphate-solubilizing peanut associated bacteria: screening for plant growth-promoting activities. Plant and soil, 329, pp.421-431.
  160. Tittabutr, P., Payakapong, W., Teaumroong, N., Singleton, P.W. and Boonkerd, N., 2007. Growth, survival and field performance of bradyrhizobial liquid inoculant formulations with polymeric additives. Science Asia, 33(1), pp.69-77.
  161. Tripathi, S., Tiwari, T. and Sachan, R., 2023. Soil Conditioners: Substances That Enhance the Physical Properties of Soil. 19-29.
  162. Van Dyke, M.I. and Prosser, J.I., 2000. Enhanced survival of Pseudomonas fluorescens in soil following establishment of inoculum in a sterile soil carrier. Soil Biology and Biochemistry, 32(10), pp.1377-1382.
  163. Vassilev, N., Vassileva, M., Martos, V., Garcia del Moral, L.F., Kowalska, J., Tylkowski, B. and Malusá, E., 2020. Formulation of microbial inoculants by encapsulation in natural polysaccharides: focus on beneficial properties of carrier additives and derivatives. Frontiers in plant science, 11, p.270.
  164. Wang, H.Y., Shen, L.I.U., Zhai, L.M., Zhang, J.Z., Ren, T.Z., Fan, B.Q. and Liu, H.B., 2015. Preparation and utilization of phosphate biofertilizers using agricultural waste. Journal of Integrative Agriculture, 14(1), pp.158-167.
  165. Wani, P.A., Khan, M.S. and Zaidi, A., 2007. Effect of metal tolerant plant growth promoting Bradyrhizobium sp.(vigna) on growth, symbiosis, seed yield and metal uptake by greengram plants. Chemosphere, 70(1), pp.36-45.
  166. Xie, F., Gao, C. and Avérous, L., 2024. Alginate-based materials: Enhancing properties through multiphase formulation design and processing innovation. Materials Science and Engineering: R: Reports, 159, p.100799.
  167. Yabur, R., Bashan, Y. and Hernández-Carmona, G., 2007. Alginate from the macroalgae Sargassum sinicola as a novel source for microbial immobilization material in wastewater treatment and plant growth promotion. Journal of Applied Phycology, 19, pp.43-53.
  168. Yao, L., Wu, Z., Zheng, Y., Kaleem, I. and Li, C., 2010. Growth promotion and protection against salt stress by Pseudomonas putida Rs-198 on cotton. European Journal of Soil Biology, 46(1), pp.49-54.
  169. Zayed, M.S., 2016. Advances in formulation development technologies. Microbial Inoculants in Sustainable Agricultural Productivity: Vol. 2: Functional Applications, pp.219-237.