ارزیابی و مقایسه صفات محرک رشدی گیاه در گروه‌های مختلف باکتری‌های ریزوسفری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 عضو هیات علمی

2 محقق مؤسسه تحقیقات خاک و آب

3 کرج-پردیس کشاورزی و منابع طبیعی دانشگاه تهران-گروه علوم ومهندسی خاک

4 استادیار علوم خاک دانشگاه تهران

10.22092/sbj.2025.367286.271

چکیده

باکتری‌های محرک رشد گیاه، گروه وسیعی از ریزجانداران مفید خاک هستند که از طریق سازوکارهای مختلف می‌توانند بر رشد گیاهان تأثیر بگذارند. در این پژوهش، 63 سویه باکتری متعلق به چهار گروه از باکتری‌های سودوموناس، ازتوباکتر، باسیلوس و آزوسپیریلوم جداسازی شده از خاک­های ایران ازنظر ویژگی­های منسوب به محرک رشد گیاه مطالعه و مقایسه شدند. توانایی سویه‌ها در تولید اکسین، سیدروفور، پلی­ساکاریدهای خارج سلولی، انحلال فسفات­های معدنی و آلی، توانایی آزادسازی پتاسیم و توانایی انحلال فسفات آهن نامحلول بررسی شدند. نتایج نشان داد که سودوموناس P214 در سطح ال-تریپتوفان 50 میلی­گرم در لیتر مقدار 51/68و در ال-تریپتوفان صفر، مقدار 48/72 میکروگرم بر میلی‌لیتر اکسین تولید کرد. ازنظر توانایی حل­کنندگی فسفات­های نامحلول معدنی و آلی به ترتیب سودوموناس P187 و P186 با نسبت قطر هاله به کلونی 2/59 و 4/13 دارای بیش‌ترین شاخص بودند. تولید سیدروفور در گروه سودوموناس با سه گروه دیگر اختلاف معنی­داری نشان داد و سویه P188 با نسبت قطر هاله به کلنی 3/38 بیش‌ترین توانایی را نشان داد. سودوموناس­ها بیش‌ترین توانایی انحلال فسفات آهن نامحلول را نشان دادند و بهترین سویه P192 با نسبت قطر هاله به کلونی 45/4 بود. بیش‌ترین توانایی آزادسازی پتاسیم از بیوتیت با مقدار 33/33 گرم در لیتر مربوط به باسیلوس B517 و از موسکویت با مقدار 24/67 مربوط به B326 بود. بالاترین مقدار تولید پلی­ساکاریدهای خارج سلولی متعلق به سویه‌های P526 با مقدار 6/84 گرم بر لیتر بود. درمجموع، گروه سودوموناس در بیشتر صفات از سه گروه دیگر برتری نسبی نشان داد. در این پژوهش سویه‌های منتخب از هر گروه ازنظر ویژگی‌های مختلف محرک رشدی برای ادامه پژوهش­ها انتخاب و معرفی شدند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation and Comparative Analysis of Plant Growth-Promoting Traits in Diverse Groups of Rhizosphere Bacteria

نویسندگان [English]

  • Houshang Khosravi 1
  • Akram Otadi 2
  • Hosseinali Alikhani 3
  • Hassan Etesami 4
1 Member of Scientific Board
2 Soil and Water Research Institute
3 Soli Science and Engineering, College of Agriculture & Natural Resources, University of Tehran, Karaj-Iran
4 Assistant Professor of Soil Science, University of Tehran
چکیده [English]

Background and objectives: Using chemical fertilizers is the primary method of plant nutrition in agriculture, however, it has a high potential for contamination of water, soil, plants, animals and humans; therefore, it is crucial to provide solutions based on sustainable development for crop production. One of the solutions is to use the potential of beneficial soil microorganisms including plant growth-promoting rhizobacteria (PGPR). The PGPR are a large group of beneficial soil bacteria that affect plant growth through various mechanisms including, production growth-promoting substances such as auxin, solubilization of insoluble organic and inorganic phosphates, production of side­rophores, and potassium releasing from soil clay minerals such as biotite and moscuvite. Having positive impact of PGPR on plant growth has led to their use as biofertilizers or inoculants in agriculture. One of the most essential components of a biofertilizer is microorganisms. The most important and well-known PGPRs include Azotobacter, Pseudomonas, Bacillus, and Azospirillum. The aim of this research was to compare these four groups, native to Iraninan soils regarding plant growth-promoting characteristics and to identify superior strains that can be investigated in future research as biofertilizers. Such a comparison has not been done in the country on different groups of PGPR.
Materials and methods: In this research, 63 strains of PGPR including 13 Azotobacter, 10 Azospirillum, 21 Bacillus, and 19 Pseudomonas strains were used obtained from the microbial culture collection of Soil and Water Research Institute which were previously isolated across from different agricultural soils of Iran. The strains were screened and compared regarding plant growth-promoting characteristics. The ability of strains to produce auxin evaluated using Salkowski reagent method at the levels 0 and 50 mg/L L-tryptophan. The siderophore assayed using the CAS-agar method, calculating the ration of halo-to-colony diameter. The extracellular polysaccharides (EPS) were measured weighting the dried precipitated substances. The ability to solubilize inorganic and organic phosphates was investigated by calculating the ratio of halo to colony diameter in Pikovskaya's agar medium. Alexandrov's method was used to investigate the ability of released potassium from muscovite and biotite soil clay minerals. The NBRIP culture medium, was used to evaluate the ability to dissolve insoluble iron phosphate. All experiments were performed in triplicate and the statistical analysis of data done using SAS software. Means were compared and grouped by the least significant difference (LSD) method at the 5% probability level.
Results: The results showed that Pseudomonas strain P214 produced 51.68 μg/mL of auxin at 50 mg/L of L-tryptophan and 48.72 μg/mL in the absence of L-tryptophan (0 mg/L). For mineral and organic phosphate solubilization, Pseudomonas P187 and P186 demonstrated the highest indices, with halo-to-colony diameter ratios of 2.59 and 4.13, respectively. Siderophore production by the Pseudomonas group was significantly higher than that of the other three groups, with strain P188 exhibiting the greatest capacity, achieving a halo-to-colony diameter ratio of 3.38. Additionally, Pseudomonas exhibited the strongest ability to solubilize insoluble iron phosphate, with strain P192 recording the highest halo-to-colony diameter ratio of 4.45. Among potassium-releasing strains, Bacillus B517 showed the highest release from biotite, with a value of 33.33 g/L, while B326 exhibited the highest release from muscovite, with a value of 24.67 g/L. Finally, strain P526 produced the highest quantity of extracellular polysaccharides, with a value of 84.6 g/L.
Conclusion: In this research, 63 strains belonging to four groups of plant growth-promoting rhizobacteria (PGPR) native to Iranian soils obtained from culture collection of Soil and Water Research institute including Pseudomonas (19 strains), Azotobacter (13 strains), Bacillus (21strains) and Azospirillum (10 strains) were investigated and compared in terms of plant growth-promoting characteristics. The results showed that the Pseudomonas group showed a significant difference from the other groups regarding siderophore production, solubilization of insoluble iron phosphate, extracellular polysaccharides, and solubility of mineral and organic phosphates. Pseudomonas and Azotobacter groups produced the highest indole acetic acid at 0 and 50 mg/L L-tryptophan levels. The Bacillus group had the highest ability to release potassium from biotite and Pseudomonas from muscovite. The Pseudomonas had superior strains in most of the plant growth-promoting characteristics, however, considering that other groups showed superiority in some other characteristics, it is suggested to use a Consortium of superstrains of each group should be used as inoculants or biofertilizers in the future research.

کلیدواژه‌ها [English]

  • Auxin
  • Azotobacter
  • Exopolysaccharides
  • Pseudomonas
  • Rhizosphere
  • Siderophore
  1. Ahmad, F., Ahmad, I., and Sahirkhan, M.2005. Indoleacetic acid production by indigenous isolates of Azotobacter and fluorescent pseudomonas in the presence and absence of tryptophan. Turk. J. Biol. 29: 29-34.
  2. Alexander, D. B., & Zuberer, D. A. 1991. Use of chrome azurol S reagents to evaluate siderophores production by rhizosphere bacteria. Biology and Fertility of soils, 12, 39-45. https://doi.org/10.1007/BF00369386.
  3. Aleksandrow, V.G. Blagodyr, R.N. and Iiiev, I.P., 1967. Liberation of phosphoric acid from apatite by silicate bacteria. Mikrobiolohichnyi zhurnal, 29, 111-114.
  4. Belimov, A.A., Dodd, I.C., Safronova, V.I., Shaposhnikov, A.I., Azarova, T.S., Makarova, N.M., Davies, W.J. and Tikhonovich, I.A., 2015. Rhizobacteria that produce auxins and contain 1‐amino‐cyclopropane‐1‐carboxylic acid deaminase decrease amino acid concentrations in the rhizosphere and improve growth and yield of well‐watered and water‐limited potato (Solanum tuberosum). Annals of Applied Biology, 167(1), pp.11-25. https://doi.org/10.1111/aab.12203
  5. Dobbelaere, S., Vanderleyden, J. and Okon, Y., 2003. Plant growth-promoting effects of diazotrophs in the rhizosphere. Critical reviews in plant sciences, 22(2), pp.1071. https://doi.org/10.1080/713610853
  6. Egamberdiyeva, D. and Höflich, G., 2002. Root colonization and growth promotion of winter wheat and pea by Cellulomonas spp. At different temperatures. Plant Growth Regulation, 38, pp.219-224. https://doi.org/10.1023/A:1021538226573
  7. Ehmann, A. 1977. The Van Urk-Salkowski reagent-a sensitive and specific chromogenic reagent for silica gel thin-layer chromatographic detection and identification of indole derivatives. Journal of Chromatography. 132, 267-276. https://doi.org/10.1016/S0021-9673(00)89300-0
  8. Ghosh, S., Mondal, S., Banerjee, S., Mukherjee, A. and Bhattacharyya, P., 2023. Temporal dynamics of potassium release from waste mica as influenced by potassium mobilizing bacteria. J Pure Appl Microbiol, 17(1). https://doi.org/10.22207/JPAM.17.1.17
  9. Glick, B.R., 2015. Beneficial plant-bacterial interactions (Vol. 243). Heidelberg: Springer. https://doi.org/10.1007/978-3-319-13921-0
  10. Goswami, S.P., Maurya, B.R., Dubey, A.N. and Singh, N.K., 2019. Role of phosphorus solubilizing microorganisms and dissolution of insoluble phosphorus in soil. International Journal of Chemical Studies, 7(3), pp.3905-3913.
  11. Jalali, M., 2006. Kinetics of non-exchangeable potassium release and availability in some calcareous soils of western Iran. Geoderma, 135, pp.63-71. https://doi.org/10.1016/j.geoderma.2005.11.006
  12. Jeon, J.S., Lee, S.S., Kim, H.Y., Ahn, T.S. and Song, H.G., 2003. Plant growth promotion in soil by some inoculated microorganisms. The Journal of Microbiology, 41(4), pp.271-276.
  13. Johnston, A. E., Poulton, P. R., Goulding, K. W., Macdonald, A. J., & Glendining, M. J. 2016. Potassium management in soils and crops: A review. In Proceedings of the International Fertiliser Society, 792:52 p
  14. Kepert, D.G., Robson, A.D. and Posner, A.M., 1979. The effect of organic root products on the availability of phosphorus to plants. In The soil-root interface (pp. 115-124). Academic Press. https://doi.org/10.1016/B978-0-12-325550-1.50015-X
  15. Khalid, A., Arshad, M. and Zahir, Z.A., 2004. Screening plant growth‐promoting rhizobacteria for improving growth and yield of wheat. Journal of applied microbiology, 96(3), pp.473-480. https://doi.org/10.1046/j.1365-2672.2003.02161.x
  16. Khalil, A.A., Fetyan, N.A. and Hemeid, N.M., 2010. Effect of Bacillus circulans and Azotobacter chroococcum inoculation on potato roduction in presence of different mineral potassium sources. Journal of Agricultural Chemistry and Biotechnology, 1(9), pp.471-483. https://doi.org/10.21608/jacb.2010.90059
  17. Khosravi, H., Khoshru, B., Nosratabad, A.F. and Mitra, D., 2024. Exploring the landscape of biofertilizers containing plant growth-promoting rhizobacteria in Iran: progress and research prospects. Current Research in Microbial Sciences, p.100268. https://doi.org/10.1016/j.crmicr.2024.100268
  18. Kinabo, J.O.Y.C.E. and SALAAM, D., 2015. Role of potassium in human and animal nutrition. In First National Potash Symposium Dares Salaam.
  19. Kloepper, J.W., Lifshitz, R. and Zablotowicz, R.M., 1989. Free-living bacterial inocula for enhancing crop productivity. Trends in biotechnology, 7(2), pp.39-44. https://doi.org/10.1016/0167-7799(89)90057-7
  20. Kumar, P., Kumar, T., Singh, S., Tuteja, N., Prasad, R. and Singh, J., 2020. Potassium: A key modulator for cell homeostasis. Journal of Biotechnology, 324, pp.198-210. https://doi.org/10.1016/j.jbiotec.2020.10.018
  21. Kundu, B.S. and Gaur, A.C., 1980. Establishment of nitrogen-fixing and phosphate-solubilising bacteria in rhizosphere and their effect on yield and nutrient uptake of wheat crop. Plant and soil, 57, pp.223-230. https://doi.org/10.1007/BF02211682
  22. Mengel, K., Kirkby, E.A., Kosegarten, H. and Appel, T., 2001. The soil as a plant nutrient medium. Principles of plant nutrition, pp.15-110. https://doi.org/10.1007/978-94-010-1009-2_2
  23. More, T.T., Yadav, J.S.S., Yan, S., Tyagi, R.D. and Surampalli, R.Y., 2014. Extracellular polymeric substances of bacteria and their potential environmental applications. Journal of environmental management, 144, pp.1-25. https://doi.org/10.1016/j.jenvman.2014.05.010
  24. https://doi.org/10.1002/1522-2624(200008)163:4<393::AID-JPLN393>3.3.CO;2-N
  25. Naseem, H., Ahsan, M., Shahid, M.A. and Khan, N. 2018. Exopolysaccharides producing rhizobacteria and their role in plant growth and drought tolerance. Journal of basic microbiology.58 (12): 1009-1022. https://doi.org/10.1002/jobm.201800309
  26. Nautiyal, C.S., 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS microbiology Letters, 170(1), pp.265-270. https://doi.org/10.1016/S0378-1097(98)00555-2
  27. O'sullivan, D.J. and O'Gara, F., 1992. Traits of fluorescent Pseudomonas involved in suppression of plant root pathogens. Microbiological reviews, 56(4), pp.662- https://doi.org/10.1128/MMBR.56.4.662-676.1992
  28. Patten, C.L. and Glick, B.R., 2002. Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Applied and environmental microbiology, 68(8), pp.3795-3801. https://doi.org/10.1128/AEM.68.8.3795-3801.2002
  29. Pikovskaya, R., 1948. Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Mikrobiologiya 17: 362-370. Plant Soil, 287, pp.77-84.
  30. Radwanski, E.R. and Last, R.L. 1995. Tryptophan biosynthesis and metabolism: biochemical and molecular genetics. The Plant Cell, 7(7), p.921. https://doi.org/10.2307/3870047
  31. Rafi, M.M., Krishnaveni, M.S., and Charyulu, P. 2019. Phosphate-solubilizing microorganisms and their emerging role in sustainable agriculture. In V. Buddolla Ed., Recent Developments in Applied Microbiology and Biochemistry pp. 223-233. [https://doi.org/10.1016/B978-0-12-816328-3.00017-9
  32. Rashid, M., Khalil, S., Ayub, N., Alam, S. and Latif, F., 2004. Organic acids production and phosphate solubilization by phosphate solubilizing microorganisms (PSM) under in vitro conditions. Pak J Biol Sci, 7(2), pp.187-196. https://doi.org/10.3923/pjbs.2004.187.196
  33. Sandhya, V.Z.A.S., Grover, M., Reddy, G. and Venkateswarlu, B. 2009. Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45. Biology and fertility of soils. 46(1):17-26. https://doi.org/10.1007/s00374-009-0401-z
  34. Sarwar, M. and Frankenberger, W.T., 1994. Influence of L-tryptophan and auxins applied to the rhizosphere on the vegetative growth of Zea mays L. Plant and Soil, 160, pp.97-104. https://doi.org/10.1007/BF00150350
  35. Sarwar, M., 1993. Microbial production of auxins in soil and their influence on plant growth. University of California, Riverside.
  36. Sarwar, M., Arshad, M., Martens, D.A. and Frankenberger, W.T., 1992. Tryptophan-dependent biosynthesis of auxins in soil. Plant and Soil, 147, pp.207-215. https://doi.org/10.1007/BF00029072
  37. Scavino, A.F. and Pedraza, R.O., 2013. The role of siderophores in plant growth-promoting bacteria. In Bacteria in agrobiology: crop productivity (pp. 265-285). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-37241-4_11
  38. Sharma, S.B., Sayyed, R.Z., Trivedi, M.H. and Gobi, T.A., 2013. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus, 2, pp.1-14. https://doi.org/10.1186/2193-1801-2-587
  39. Silva, L.I.D., Pereira, M.C., Carvalho, A.M.X.D., Buttrós, V.H., Pasqual, M. and Dória, J., 2023. Phosphorus-solubilizing microorganisms: a key to sustainable agriculture. Agriculture, 13(2), p.462. https://doi.org/10.3390/agriculture13020462
  40. Sindhu, S.S., Parmar, P., Phour, M. and Sehrawat, A., 2016. Potassium-solubilizing microorganisms (KSMs) and its effect on plant growth improvement. Potassium solubilizing microorganisms for sustainable agriculture, pp.171-185. https://doi.org/10.1007/978-81-322-2776-2_13
  41. Skvortsov, I.M. and Ignatov, V.V. 1998. Extracellular polysaccharides and polysaccharide-containing biopolymers from Azospirillum species: properties and the possible role in interaction with plant roots. FEMS microbiology letters, 165(2): 223-229. https://doi.org/10.1111/j.1574-6968.1998.tb13150.x
  42. Staswick, P.E., 2009. The tryptophan conjugates of jasmonic and indole-3-acetic acids are endogenous auxin inhibitors. Plant physiology, 150(3), pp.1310-1321. https://doi.org/10.1104/pp.109.138529
  43. Sundara, B., Natarajan, V. and Hari, K., 2002. Influence of phosphorus solubilizing bacteria on the changes in soil available phosphorus and sugarcane and sugar yields. Field crops research, 77(1), pp.43-49. https://doi.org/10.1016/S0378-4290(02)00048-5
  44. Torres-Rubio, M.G., Valencia-Plata, S.A., Bernal-Castillo, J. and Martínez-Nieto, P., 2000. Isolation of Enterobacteria, Azotobacter sp. and Pseudomonas sp., producers of indole-3-acetic acid and siderophores, from Colombian rice rhizosphere. Revista Latinoamericana de Microbiología, 42(4), pp.171-176.
  45. Yousuf, S., Naqash, N. and Singh, R., 2022. Nutrient Cycling: An Approach for Environmental Sustainability. Environmental Microbiology: Advanced Research and Multidisciplinary Applications; Bentham Science Publisher: Sharjah, United Arab Emirates, p.77. https://doi.org/10.2174/9781681089584122010007
  46. Zhao, Y., 2012. Auxin biosynthesis: a simple two-step pathway converts tryptophan to indole-3-acetic acid in plants. Molecular plant, 5(2), pp.334-338. https://doi.org/10.1093/mp/ssr104