غربالگری و شناسایی مؤثرترین جدایه‌ی ریزوبیومی (Mezorhizobiumciceri) و بررسی برهمکنش آن با قارچ میکوریز آربسکولار در عملکرد و کیفیت بذر نخود رقم آنا

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه تربیت مدرس

2 هئیت علمی دانشگاه تربیت مدرس

3 محقق موسسه

4 هیئت علمی دانشگاه تربیت مدرس

5 پژوهشگاه بیوتکنولوژی کشاورزی

10.22092/sbj.2025.367013.270

چکیده

نخود، از مهم‌ترین منابع گیاهی غنی از پروتئین است و غالباً در شرایط دیم کشت می‌شود. ریزوبیوم‌ها و قارچ‌های میکوریز، از همزیست‌های مهم گیاه هستند و می‌توانند باعث افزایش محصول در گیاهان شوند. مطالعه‌ی حاضر، مؤثرترین باکتری ریزوبیوم تثبیت‌کننده‌ی نیتروژن برای نخود (Mezorhizobium ciceri) رقم آنا را شناسایی کرده‌ و اثر متقابل آن با قارچ میکوریز آربسکولار (Rhizophagus intraradices) در عملکرد و کیفیت بذر نخود را مورد ‌بررسی قرار‌داده‌است. این تحقیق در سه مرحله انجام شد: در مرحله‌ی اول، 53 جدایه‌ی ریزوبیوم کلکسیون میکروبی مؤسسه تحقیقات خاک و آب کشور، کشت داده‌شدند. مرحله‌ی دوم تحقیق، گلخانه‌ای بود که در دو فاز انجام شد: در فاز اول، گیاه نخود (رقم آنا)، تحت آزمون آلوده‌سازی با باکتری‌های ریزوبیوم قرارگرفت که 42 ایزوله ایجاد گرهک کردند. در فاز دوم، بااستفاده از جار لئونارد، توانایی تثبیت مولکولی ایزوله‌هایی که در فاز اول ایجاد گرهک کرده‌بودند، سنجیده‌شده و بهترین ایزوله (ایزوله‌ی C-110) انتخاب شد. مرحله‌ی سوم تحقیق، در مزارع ایستگاه تحقیقات دیم سرارود در فصل زراعی 1401-1400 به‌صورت دیم اجرا شد. در این آزمایش فاکتوریل، در قالب طرح بلوک کامل تصادفی، فاکتور اول، تیمار قارچی در دو سطح تلقیح با قارچ و فاقد قارچ، فاکتور دوم، تیمار باکتریایی در دو سطح تلقیح با باکتری (C-110) و فاقد باکتری و فاکتور سوم، سطوح کود شیمیایی در دو سطح فاقد کود و مصرف بهینه‌ی کود بود. پس از برداشت، نتایج نشان داد استفاده از ریزجانداران مانند قارچ میکوریز و باکتری ریزوبیوم (جدایه‌ی کاملاً کارآمد و اختصاصی برای هر رقم) و توصیه‌ی بهینه‌ی کودی در شرایط دیم می‌تواند باعث افزایش بیومس، عملکرد، تعداد شاخه‌های فرعی در بوته و کیفیت دانه (غلظت نیتروژن، فسفر و روی دانه) شود و از استفاده‌ی بیش از حد از کودهای شیمیایی که باعث تخریب حاصلخیزی خاک می‌شوند، جلوگیری کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Screening and identification of the most effective rhizobial isolate (Mezorhizobiumciceri)and investigating its interaction with arbuscular mycorrhizal fungus in the yield and quality of chickpea seeds of Anna

نویسندگان [English]

  • Mehrzad ََAnsari 1
  • Mohammad Jafar Malakouti 2
  • Farhad Rejali 3
  • Ali Mokhtassi Bidgoli 4
  • Saber Golkari 5
1 Tarbiat modares university
2 Academic staff of Tarbit Modares University
3 Institute researcher
4 Academic staff of Tarbiat modares university
5 Agricultural biotechnology research institute
چکیده [English]

Background and objective:
Legumes are one of the most important vegetable sources rich in protein and the second most important human food source after cereals. 64% of the cultivated area of legumes in Iran is related to the cultivation of chickpeas, which ranks third among the crops in terms of cultivated area, after wheat and barley. Chickpeas are often cultivated in dry conditions and the yield of this crop in Iran is very low compared to the global average yield of chickpea producing countries. Waterdeficit is one of the important factors that reduce the yield of this plant.The present study has identified the most effective nitrogen-fixing rhizobium bacterium for chickpea of Anna variety and investigated its interaction with arbuscular mycorrhizal fungus (Rhizophagusintraradices) in the yield and quality of chickpea seeds.
Material and Methods:
This project was done in three stages: In the first stage, 53 rhizobium isolates available in the microbial collection of the Soil and Water Research Institute of Iran were cultured. The second phase of the project was a greenhouse, which was carried out in two phases: the purpose of the first phase of this stage was to determine the most effective rhizobium bacteria symbiotic with the pea plant (Anna cultivar). For this purpose, rhizobium isolates were inoculated into chickpea plants and subjected to the plant contamination test. After about a month, the presence or absence of nodules on the roots of chickpea seedlings was checked. The isolates that were able to form nodules on the chickpea root system were transferred to the next phase. In the second phase of the second stage, during another greenhouse test and in comparison with specific levels of nitrogen, the molecular stabilization ability of the selected isolates using leonard jar containers and then measuring the amount of nitrogen by the Keldahl method as well as measuring the acetylene reduction process. Among the tested, the isolates which had the best result, was transferred to the next phase. The third (final) stage of the research was carried out in the fields of Sararood rain research station in the cropping season of 1400-1401. Chickpea cultivation in this area is done in a rainfed manner. In this factorial experiment, in the form of randomized complete block design, The first factor, fungal treatment in two levels of inoculation with arbuscular mycorrhizal fungus and without arbuscular mycorrhizal fungus. The second factor, bacterial treatment at two levels of inoculation with C-110 bacteria and without bacteria. The third factor was the levels of chemical fertilizers in two levels without fertilizer and optimal fertilizer consumption (50 kg/ha of urea before planting, 50 kg/ha of urea and 25 kg/ha of potassium sulfate containing zinc chelate in the form of side-dressing fertilizer in the spring season).The seed inoculation method was used to use mycorrhizal fungi and rhizobium bacteria. After the growth period, grain yield, biomas, number of side branches per plant and quality of chickpea seeds were measured.
Results:
Among the 53 isolates of rhizobium, 42 isolates were able to form nodules on the chickpea root system, and after testing the second phase of the second stage, isolate C-110 had the best result and was transferred to the next phase. The results of the third stage showed that the application of mycorrhizal bacteria, rhizobium C-110 and fertilizer, increased grain yield, biomas, number of side branches per plant and grain quality (nitrogen, phosphorus and zinc) in Sararood research stations.
Conclusion:
The general results of this research indicated that although the waterdeficit in rainy conditions caused a decrease in the examined traits, the use of microorganisms (arbuscular mycorrhizal fungus and rhizobium C-110 bacteria) could reduce the negative effect of Waterdeficit and In the regions of the country where legumes are grown and there is water stress, the use of these two microorganisms can reduce the negative effects of water stress, and since climate change and some agricultural management practices, such as tillage and excessive use of chemical fertilizers, in have played a role in the destruction of soil fertility, these microorganisms can be used for ecosystem health and increasing productivity in agriculture. It is obvious that the symbiosis of mycorrhizal fungi and rhizobium bacteria in each stress and each plant should be investigated separately in order to be able to identify the appropriate species for those conditions so that plants can be helped by the correct use of this triple symbiosis. In other words, the condition for effective symbiosis is the existence of a completely efficient and specific bacterial isolate for the host plant And it should be provided in sufficient quantity from the initial stages of growth. But in general, it can be said that the symbiosis between mycorrhizal fungi and rhizobium bacteria in legumes improves plant growth and makes plants more tolerant of living and non-living stresses. The efficiency potential of these materials will be revealed when all agricultural operations are carried out at the right time and place with the help of appropriate tools.

کلیدواژه‌ها [English]

  • Chickpea seed quality
  • Chickpea yield
  • Cicer arietinum L
  • Nitrogen fixing rhizobium
  • Rhizophagusintraradices
  1. Ahmadi, A., Ehsanzadeh, P. and Jabbari, F.  An Introduction to Plant Physiology. Tehran University. (in Persian).
  2. Ali Ahiaei, M. 1997. Methods of chemical analysis of soil. Soil and Water Research Institute. Publication number 1024.
  3. Allosh, G. A. Z., Zeto, S. K. and Clark, R. B. 2000. Phosphorus sources, organic matter, in acid soil. Journal of Plant Nutrition 23: 1351-1369.
  4. Arshadi, J., Parsa, M., Lakzian, M. and Kafi, M. 2021. Effects of mycorrhiza symbiosis on seed yield and some physiological responses of chickpea genotypes. Agriculture, Environment & Society 1(1): 31-37.
  5. Benami, M., Isack, Y., Grotsky, D., Levy, D. and Kofman, Y. 2020. The economic potential of arbuscular mycorrhizal fungi in agriculture. Grand Challenges in Fungal Biotechnology 239–279.
  6. Biswas, J.C., Ladha, J.K. and Dazzo, F.B. 2000. Rhizobial inoculation improves nutritional uptake and growth of lowland rice. Soil Sceince Society of American Journal 64: 1644-1650.
  7. Denison, R.F. and Kiers, E.T. 2011. Life histories of symbiotic rhizobia and mycorrhizal fungi. Current Biology 21:775–785.
  8. Emami, A. Plant analysis methods. 1996. Soil and Water Research Institute. Publication number 982.
  9. Erman, M., Demir, S., Ocak, E., Tüfenkçi, S., Oğuz, S. and Akköprü, A. 2011. Effects of Rhizobium, arbuscular mycorrhiza and whey applications on some properties in chickpea (Cicer arietinum) under irrigated and rainfed conditions 1—Yield, yield components, nodulation and AMF colonization. Field Crops Research. 122(1): 14-24.
  10. Ferreira E.M., and Marques J.F. 1992. Selection of Portuguese Rhizobium leguminosarumbv. trifolii strains for production of legume inoculants. Plant Soil. 147: 151–158.
  11. Fujishige, N.A., Kapadia, N.N., De Hoff, P.L. and Hirsch, A.M. 2006. Investigation of Rhizobium biofilm formation. FEMS Microbiol Ecol. 56(2): 195-206.
  12. He, J., Dong, T., Wu, H., Zou, Y., Wu, Q. and Kuča, K. 2019. Mycorrhizas induce diverse responses of root TIP aquaporin gene expression to drought stress in trifoliate orange. Scientia Horticulturae 243:64–69.
  13. Khosrojerdi, M., Shahsavani, Sh., Gholipour, M. and Asghari, J. 2014. The effect of inoculation of rhizobium bacteria and mycorrhizal fungi on the absorption of some mineral elements by peas at different levels of iron sulfate fertilizer. Crop Production Journal. 6(3): 71-87. (inpersian).
  14. Larimer, A.L., Clay, K. and Bever, J.D. 2014. Synergism and context dependency of interactions between arbuscular mycorrhizal fungi and rhizobia with a praire legume. Ecology 95:1045–1054.
  15. Mahmoudzadeh, M., RassouliSedghiani, M.H. and AsgariLagayer, M. 2015. The Effect of Rhizobacteria Growth Stimulator and Arbuscular Mycorrhizal Fungi on Morphological Characteristics and High Contaminated Elements of Peppermint MenthaPiperita L. in Greenhouse Conditions. Science and Technology of Greenhouse Crops 24(6):155-167.
  16. Massa, N., Cesaro, P., Todeschini, V., Capraro, J., Scarafoni, A., Cantamessa, S., Copetta, A., Anastasia, F., Gamalero, E., Lingua, G., Berta, G. and Bona, E. 2020. Selected autochthonous rhizobia, applied in combination with AM fungi, improve seed quality of common bean cultivated in reduced fertilization condition. Applied Soil Ecology 148: 202-222.
  17. Moradi, S., Besharati. S., Feiziasl, V. and Sheikhi, J. 2018. The effect of drought stress and treatments of arbuscular root fungi and rhizobium on the concentration of nutrients in roots, shoots and soil in chickpea cultivation. Science and Technology of Greenhouse Cultivation. 8(2):13-24. (in Persian).
  18. Muangthong A., Youpensuk S., Rerkasem B. 2015. Isolation and characterisation of endophytic nitrogen fixing bacteria in sugarcane. Tropical Life Sciences Research. 26:41-51.
  19. Oliveira, R., Carvalho, P., Marques, G., Ferreira, L., Nunes, M., Rocha, I., Ma, Y., Carvalho, F., Vosátka, M. and Freitas, H. 2016. Increased protein content of chickpea (Cicer arietinum) inoculated with arbuscular mycorrhizal fungi and nitrogen-fixing bacteria under water deficit conditions. Society of Chemical Industry 65:145-161.
  20. Pellegrino, E., Öpik, M., Bonari, E. and Ercoli, L. 2015. Responses of wheat to arbuscular mycorrhizal fungi: a meta-analysis of field studies from 1975 to 2013. Soil Biology and Biochemistry 84:210–217.
  21. Rejali, F. 2018. Familiarity with mycorrhizal fungi and their use in different ecosystems. Soil and Water Research Institute. No 110. (inpersian).
  22. Sabaghpour, S.H., Mahmodi A.A., Saeed A., Kamel, M. and Malhotra, R.S. 2006. Study on chickpea drought tolerance lines under dryland condition of Iran. Indian j. Crop Science 1:70-73.
  23. Smith, S.E. 2002. Soil microbes and plants-raising interest, mutual gains. New Phytologist 156:142–144.
  24. Soumare, A., Diop, T., Manga, A. and Ndoye, I. 2015. Role of arbuscular mycorrhizal fungi and nitrogen fixing bacteria on legume growth under various environmental stresses. International Journal of Biosciences 7(4):31-46.
  25. Stancheva, M., Geneva, G., Zehirov, G., Tsvetkova, M., Hristozkova, G. and Georgiev, M. 2006. Effects of combined inoculation of pea plants with Arbuscular Mycorrhizal fungi and Rhizobium on nodule formation and nitrogen fixing activity. Plant Physiology 61-66.
  26. Tavassoli, A., Ali asgharzad, N., Salehijozani, Gh. and Asgharzadeh, A. 2017. Study of nutrient uptake in tripartite symbiosis of chickpea with mycorrhizak fungi and rhizobium bacteria. The 6th National Conference on Grains in Iran. (in Persian).
  27. Togay, N., Mesut Cimrin, C. and Turan, M. 2008. Effects of rhizobium inoculation, sulfur and phosphorus applications on yield, yield components and nutrient uptakes in chickpea (Cicer arietinum L.). Afr J Biotechnol. 7(6):776-782.
  28. Trung, B.Ch. and Yoshida, Sh. 1983. Improvement of Leonard jar assembly for screening of effective rhizobium. Soil Science and Plant Nutrition. 29(1) 97-100.
  29. Volpiano, C.G., Lisboa, B.B., Brilhante J.F., Rotta de diveira, A.M., Beneduzi, A., Pereirapassaglia, L.M. and Vargas, L.K. 2018. Rhizobium strains in the biological control of the phytopathogenic fungi Sclerotium (Athelia) rolfsii on the common bean. Plant Soil 432:229-243.
  30. Yadav, A.N. 2020. Plant microbiomes for sustainable agriculture: current research and future challenges. Springer Nature 475-482.
  31. Yadav, S.S., Redden, R., Chen, W. and Sharma, B. 2007. Chickpea breeding and management. CABI Books (digital library) 1-13.