بررسی توانایی تشکیل بیوفیلم توسط باکتری‌های موجود در کود زیستی فسفات بارور 2 و اثر آنها همراه با کاربرد خاک فسفات بر رشد جو

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، بیولوژی و بیوتکنولوژی خاک، گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه مراغه

2 دانشجوی سابق کارشناسی ارشد، گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه مراغه

3 استاد، فیزیولوژی گیاهان زراعی، گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه مراغه

4 دانشیار، پیدایش، رده‌بندی و ارزیابی خاک، گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه مراغه

10.22092/sbj.2025.368020.273

چکیده

تشکیل بیوفیلم در ریزوسفر گیاهان زراعی توسط باکتری­های حل کننده فسفات نامحلول خاک می­تواند با بهبود کلنیزاسیون ریشه و افزایش حلالیت فسفر موجب افزایش کارآمدی آنها شود. کود زیستی فسفات بارور2  حاوی باکتری­های Pesudomonas putida و Pantoa agglomerans می­باشد، که با ترشح اسیدهای آلی و آنزیم فسفاتاز باعث تجزیه ترکیبات فسفره نامحلول در خاک شده و امکان جذب این عنصر را برای گیاهان فراهم می‌کند. تاکنون اطلاعاتی در خصوص قابلیت تشکیل بیوفیلم توسط باکتری­های این کود گزارش نشده است. برای بررسی این موضوع باکتری­های این کود جداسازی شده و تشکیل بیوفیلم توسط آن­ها روی سطح پلاستیکی و در حضور ترشحات ریشه جو ارزیابی شد. سپس توانایی انحلال فسفر این باکتری­ها با کاربرد پودر سنگ فسفات در محیط کشت اسپربر به­صورت جداگانه و کنسرسیوم دو باکتری اندازه­گیری شد. در ادامه آزمایشی گلخانه­ای به صورت فاکتوریل در قالب طرح کامل تصادفی با 3 تکرار با تلقیح جو رقم انصار و 3 سطح فسفر از منبع خاک فسفات (صفر، 6 و 12 میلی­گرم بر کیلوگرم) طراحی شد و اجزای عملکرد جو در این تیمارها مورد ارزیابی قرار گرفت. نتایج دادند که باکتری­های این کود توانستند در حضور ترشحات ریشه گیاه جو بیوفیلم تشکیل دهند. شاخص بیوفیلم در باکتری­ها به­صورت فردی و در حالت کنسرسیوم متفاوت بود و بیشترین میزان آن به مقدار 0/84 در باکتری P. agglomerans  مشاهده گردید. برقراری رابطه رگرسیونی میان صفات اجزای عملکرد ارزیابی شده، با شاخص تشکیل بیوفیلم توسط باکتری­ها نشان داد که شاخص­ برداشت با ضریب تبیین 0/97، وزن هزار دانه با شاخص تبیین 0/97و وزن دانه در گلدان با ضریب تبیین 0/74 بهترین ارتباط خطی و مستقیم را با آن دارند. بنابراین به­نظر می­رسد تشکیل بیوفیلم توسط باکتری‌های حل‌کننده فسفات می‌تواند به عنوان یک استراتژی مؤثر در بهبود کارایی کودهای زیستی و افزایش جذب فسفر توسط گیاه جو و احتمالا سایر گیاهان زراعی مورد توجه قرار گیرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the ability of biofilm formation by bacteria of Barvar 2 phosphate biofertilizer and their effect along with the application of phosphate soil on barley growth

نویسندگان [English]

  • Esmaeil Karimi 1
  • Sima Aslyazdani 2
  • Ezzatallah Esfandyari 3
  • Seyed Bahman Mousavi 4
1 Assistant Professor,Department of Soil Science and Engineering, Faculty of Agriculture, University of Maragheh, Maragheh
2 M.Sc., Department of Soil Science and Engineering, Faculty of Agriculture, University of Maragheh, Maragheh.
3 Professor, Department of Plant Production Engineering and Genetics, Faculty of Agriculture, University of Maragheh, Maragheh
4 Associate Professor, Department of Plant Production Engineering and Genetics, Faculty of Agriculture, University of Maragheh, Maragheh
چکیده [English]

Background and Objectives: Phosphorus bioavailability in soil is a key issue in plant nutrition, especially in calcareous and acidic soils, where it rapidly forms insoluble compounds. Phosphate-solubilizing bacteria (PSB) have been used as biofertilizers to release available phosphorus from these sources. Barvar 2, a phosphate biofertilizer widely used in the country, contains two strains of phosphate-dissolving bacteria: Pantoea agglomerans P25 and Pseudomonas putida P13. These bacteria release organic acids, which lower soil pH, chelate minerals, and affect ion exchange reactions to mobilize phosphorus. However, the success of these biofertilizers depends on the bacteria’s ability to compete with native soil bacteria and colonize plant roots effectively. This aspect of the biofertilizer’s functionality is a concern and requires further study. One key factor influencing root colonization is the ability of bacteria to form biofilms in the rhizosphere. Biofilms enhance bacterial survival and colonization by providing protection against environmental stressors and improving bacterial persistence in the soil. Studies suggest that bacteria capable of forming biofilms are more efficient at colonizing roots and promoting plant growth. Biofilm formation is a desirable trait for growth-promoting bacteria, and its effectiveness varies across different bacterial strains. These bacteria typically form biofilms that help retain moisture and improve their overall survival compared to planktonic forms. Given the importance of phosphorus for cereal production, especially barley, understanding how biofilm formation by PSB bacteria affects plant growth under different phosphorus treatments in calcareous soils is crucial. This study aims to explore the ability of Barvar 2 bacteria to form biofilms and their impact on barley growth when used as a biofertilizer in varying soil conditions.
Materials and Methods: Barvar 2 biofertilizer package prepred from market. Barley seed var. Ansar was obtained from the Dryland Agricultural Research Institute. Barley seeds were disinfected with bleach and alcohol and grown under completely sterile conditions until the two-leaf stage (Zadoks Stage 12) in a minimum salt solution, for extracting root exudates. The biofilm formation by the bacterial components of the biofertilizer in the root exudates was assessed using the crystal violet staining method.  In this experiment, TSB medium at a concentration of 0.5 X was used as the control. The ability to dissolve phosphate from a phosphate rock source was performed using liquid Sperber medium over a period of 7 days. To investigate the correlation between biofilm formation ability and barley growth, a pot experiment was conducted in a factorial within a completely randomized design. The treatments were including with and without biofertilizer bacteria, and using powdered phosphate rock at three levels: zero, 6 and, 12 mg/kg of soil. The research was conducted in greenhouse of the Faculty of Agriculture at University of Maragheh. At the end of the experiment, Yield and yield components, including straw weight, number of grains, plant height, leaf weight, biological yield, harvest index, 1000 seed weight, spike weight, and seed weight, were measured. The data obtained were analyzed using SAS software, and mean comparisons were made at a 5% probability level of Duncan’s test.
Results: Our results showed that biofilm-forming ability of the bacteria separately in the barley root exudate medium was higher than in the TSB medium. However, this effect was not observed when the two bacteria were mixed. The biofilm-forming ability of P. agglomerans was greater than P. putida, and the bacterial mixture affected biofilm formation. Inoculation of the Sperber medium containing phosphate rock with P. putida increased the EC of the medium to (110µS/cm), whereas inoculation with P. agglomerans increased the EC to (528µS/cm), compared to the control. However, inoculation of the Sperber medium containing phosphate rock with P. putida caused a 2.47-unit drop in pH, and a 3.86-unit drop was observed with P. agglomerans, compared to the control. Linear relationships between the traits of grain weight in the pot, thousand-grain weight, and harvest index with the biofilm formation index by the components of the biofertilizer showed a significant correlation with determination coefficients (R²) of 74%, 97%, and 97%, respectively.
Conclusion: This study sheds light on the importance of bacterial biofilm formation in the context of biofertilizers, particularly when the bacteria are involved in nutrient solubilization from sources like phosphate rocks. The significant correlations (R² of 74% for grain weight, 97% for thousand-grain weight, and 97% for harvest index) with the biofilm formation index suggest that biofilm formation by biofertilizer bacteria is closely related to crop yield parameters. This indicates that assessing biofilm formation could serve as an important criterion in evaluating the efficacy of biofertilizers. It also points to the potential for improving crop yield through the strategic use of biofilm-forming bacteria in agricultural systems.

کلیدواژه‌ها [English]

  • Pantoa bacterium
  • Pseudomonas bacterium
  • Root morphology
  • Harvest index
  • Crystal violet
  • 1000 seed weight
  1. Akhvan, S., Sha'banpour, M., & Esfahani, M. (2012). The effect of soil density and texture on root and shoot growth of wheat. Water and Soil, 26(3), 727-735. (In Persian)
  2. Ali-Ehiayi M and Behbahani AA, 1993. Description of soil chemical analysis methods. Soil and Water Research Institute. No: 892 Iran. (In Persian)
  3. Alizadeh, A. (1999). The relationship of water, soil, and plant. Astan Quds Razavi Publishing, Imam Reza University.353 pages. (In Persian)
  4. Asadi, H., & Gorji, M. (2022). Challenges and limitations of soil and land resources in Iran. Land Management Journal10(1), 111-134. (In Perisan)
  5. Batool, S., & Iqbal, A. (2019). Phosphate solubilizing rhizobacteria as alternative of chemical fertilizer for growth and yield of Triticum aestivum (Var. Galaxy 2013). Saudi journal of biological sciences26(7), 1400-1410.
  6. Beauregard, P. B., Chai, Y., Vlamakis, H., Losick, R., & Kolter, R. (2013). Bacillus subtilis biofilm induction by plant polysaccharides. Proceedings of the National Academy of Sciences110(17), E1621-E1630.
  7. Bindraban, P. S., Dimkpa, C. O., & Pandey, R. (2020). Exploring phosphorus fertilizers and fertilization strategies for improved human and environmental health. Biology and Fertility of Soils56(3), 299-317.
  8. Costerton, J. W., Stewart, P. S., & Greenberg, E. P. (1999). Bacterial biofilms: a common cause of persistent infections. Science, 284(5418), 1318-1322.
  9. de Oliveira, R. S., Gonçalves, A. R., Ajulo, A. A., Oliveira, L. R., Lanna, A. C., & de Filippi, M. C. C. (2024). Survey and genomic characterization of Serratia marcescens on endophytism, biofilm, and phosphorus solubilization in rice plants. Environmental Science and Pollution Research, 1-15.
  10. Ebrahimi, M., Safari-sinegani, A. A., Sarikhani, M., & Aliasgharzad, N. (2018). Study on phosphate solubilizing ability of some bacterial isolates and determination of solubilized phosphorus fractionation in supernatant and microbial biomass. Journal of Microbial Biology7(25), 109-125. (In Perisan)
  11. Emami, S., Alikhani, H. A., Pourbabaei, A. A., Etesami, H., Sarmadian, F., & Motessharezadeh, B. (2019). Effect of rhizospheric and endophytic bacteria with multiple plant growth promoting traits on wheat growth. Environmental Science and Pollution Research26, 19804-19813.
  12. Fallah Nosratabad, A. and Khoshru, B. (2024). Potentials and challenges of biofertilizers in sustainable agriculture. Journal of Sol Biology12(1), 19-63.
  13. Fallah, A. R. (2022). Solubilization Mechanisms of insoluble phosphates by phosphate solubilizing microorganisms. Journal of Sol Biology10(1), 93-110.
  14. Ghosh, R., Barman, S., & Mandal, N. C. (2019). Phosphate deficiency induced biofilm formation of Burkholderia on insoluble phosphate granules plays a pivotal role for maximum release of soluble phosphate. Scientific Reports9(1), 5477.
  15. Habibi, M. , Rejali, F. , Zaefarian, F. and Bagheri, N. A. (2022). Evaluation of root colonization and biochemical compounds of saffron under irrigation regime, arbuscular mycorrhizal fungi and organic fertilizer. Journal of Sol Biology10(1), 65-80.
  16. Hussain, A., Adnan, M., Iqbal, S., Fahad, S., Saeed, M., Mian, I. A., ... & Andaleeb, S. (2019). 78. Combining phosphorus (P) with phosphate solubilizing bacteria (PSB) improved wheat yield and P uptake in alkaline soil. Pure and Applied Biology (PAB)8(2), 1809-1817.
  17. Joshi, R. V., Gunawan, C., & Mann, R. (2021). We are one: multispecies metabolism of a biofilm consortium and their treatment strategies. Frontiers in Microbiology12, 635432.
  18. Karimi, E., Aliasgharzad, N., & Esfandyari, E. (2023). Evaluation of biofilm formation ability by biofilm growth promoting bacteria at the root surface of wheat (Triticum aestivum) and their effects on grain yield. Journal of Agricultural Science and Sustainable Production, 33(2):133-146. (In Perisan)
  19. Karimi, E., Aliasgharzad, N., Esfandiari, E., Hassanpouraghdam, M. B., Neu, T. R., Buscot, F., ... & Tarkka, M. T. (2022). Biofilm forming rhizobacteria affect the physiological and biochemical responses of wheat to drought. AMB Express12(1), 93.
  20. Karimi, E., Alisgharzad, N., Mousavi, S. B., & Aliloo, A. (2022). The effect of growth promoting bacteria on barley yield and morphological root characteristics under different water conditions. Journal of Soil and Plant Interactions, 13(2): 67-81. (In Perisan)
  21. Karimi, E., Mohammadi, S. & Esfandyari, E. (2022). Effect of biofilm-forming plant growth promoting bacterium and tryptophan on yield and Cadmium uptake in Rye (Secale cereale). Journal of Soil Biology10(2), 177-191. (In Persian)
  22. Kasim, W. A., Gaafar, R. M., Abou-Ali, R. M., Omar, M. N., & Hewait, H. M. (2016). Effect of biofilm forming plant growth promoting rhizobacteria on salinity tolerance in barley. Annals of Agricultural Sciences, 61, 217–227.
  23. Khosravi, H. (2023). The Effect of Plant Growth Promoting Rhizobacteria Inoculation on Wheat Growth Indices in Saline Irrigation Conditions. Journal of Sol Biology11(1), 17-31.
  24. Leytem, A. B., & Westermann, D. T. (2003). Phosphate sorption by Pacific Northwest calcareous soils. Soil science168(5), 368-375.
  25. Mishra, B. K., & Barolia, S. K. (2020). Quality assessment of microbial inoculants as biofertilizer. International Journal of Current Microbiology and Applied Sciences, 9(10), 3715-3729.
  26. Naseri, R., Barary, M., Zarea, M. J., Khavazi, K., & Tahmasebi, Z. (2019). Wheat-root system influenced by application of phosphate solubilizing bacteria and mycorrhizal fungi under different levels of phosphorous chemical fertilizer. Journal of Soil Biology, 6(2), 137-155. (In Persian)
  27. Ochoa-Loza FJ, Artiola JF, Maier RM (2001) Stability constants for the complexation of various metals with a rhamnolipid biosurfactant. J Environ Qual 30:479–485.
  28. Rehman, F. U., Kalsoom, M., Adnan, M., Toor, M., & Zulfiqar, A. (2020). Plant growth promoting rhizobacteria and their mechanisms involved in agricultural crop production: a review. SunText Rev. Biotechnol1(2), 1-6.
  29. Rejali, F., Asadirahmani, H., Khavazi, K., Asgharzadeh, A., & Esmaeilizad, A. (2014). The place of phosphatic biofertilizers and necessity to develop them in Iranian agriculture. Land Management Journal2(1), 27-39. (In Perisan)
  30. Sarikhani, M. R., & Amini, R. (2020). Biofertilizer in sustainable agriculture: review on the researches of biofertilizers in Iran. Journal of Agricultural Science and Sustainable Production, 30(1), 329-365. (In Perisan)
  31. Seneviratne, G., Jayasinghearachchi, H.S., 2005. A rhizobial biofilm with nitrogenase activity alters nutrient availability in a soil. Soil Biol. Biochem. 37, 1975–1978.
  32. Sharma, S. B., Sayyed, R. Z., Trivedi, M. H., & Gobi, T. A. (2013). Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus2, 1-14.
  33. Stepanović, S., Vuković, D., Hola, V., Bonaventura, G. D., Djukić, S., Ćirković, I., & Ruzicka, F. (2007). Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. Apmis115(8), 891-899.
  34. Taktek, S., St-Arnaud, M., Piché, Y., Fortin, J. A., & Antoun, H. (2017). Igneous phosphate rock solubilization by biofilm-forming mycorrhizobacteria and hyphobacteria associated with Rhizoglomus irregulare DAOM 197198. Mycorrhiza27, 13-22.
  35. Tohidinia, M. A., Mazaheri, D., Bagher-Hosseini, S. M., & Madani, H. (2013). Effect of biofertilizer Barvar-2 and chemical phosphorus fertilizer application on kernel yield and yield components of maize (Zea Mays Sc704). Iranian Journal of Crop Science, 4(60): 295-307. (In Persian)
  36. Valetti, L., Iriarte, L., & Fabra, A. (2018). Growth promotion of rapeseed (Brassica napus) associated with the inoculation of phosphate solubilizing bacteria. Applied Soil Ecology132, 1-10.
  37. Van Kauwenbergh, S. J. (2010). World phosphate rock reserves and resources (p. 48). Muscle Shoals: Ifdc.
  38. Wang, D., Jiang, C., Zhang, L., Chen, L., & Zhang, X. (2019). Biofilms positively contribute to Bacillus amyloliquefaciens 54 induced drought tolerance in tomato plants. International Journal of Molecular Sciences, 20, 6271.