قارچ‌های آگاریک خوراکی، سمی، دارویی و دارای ارزش اقتصادی همزیست با راش شرقی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه علوم و مهندسی جنگل، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران.

2 استاد گروه علوم و مهندسی جنگل، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران. محقق مهمان، انستیو جنگلشناسی و اکولوژی جنگل مناطق معتدله، دانشگاه جورج- آگوست گوتینگن، آلمان.

3 دانشیار گروه گیاهپزشکی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران.

4 استاد گروه علوم و مهندسی جنگل، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران.

5 استادیار، مرکز تحقیقات کشاورزی و منابع طبیعی استان مازندران، ایستگاه تحقیقات جنگل و مرتع پاسند، بهشهر، مازندران،ایران.

10.22092/sbj.2025.369850.281

چکیده

قارچ­های اکتومیکوریز از لحاظ اقتصادی یکی از مهم‌ترین گروه قارچ‌های خاک به شمار می‌رود، علاوه بر پراکنش وسیع، بخش قابل توجهی از بیومس خاک را به خود اختصاص داده­اند. نمونه‌‌برداری از ریز ریشه‌‌ها به ‌عمق 10 سانتی‌‌متر جهت شناسایی قارچ اکتومیکوریز انجام شد و در آزمایشگاه قارچ­شناسی از طریق استخراج دی­ان­ای ناحیه ITS nrDNA با استفاده از زوج آغازگر‌های ITS1F و ITS4B یا ITS4 تکثیر و توالی‌یابی شد و با نرم افزار Bio edit اصلاح و در NCBI مورد بررسی قرار گرفتند و قارچ­های اکتومیکوریز به طریق مولکولی و استخراج DNA شناسایی شدند و خاصیت خوراکی، سمی، دارویی و دارای ارزش اقتصادی از طریق منابع معتبر انجام گرفت. کلادوگرام حاصل از مقایسه‌ی توالی‌های نوکلئوتیدی ناحیه ITS جدایه­های به دست آمده (جنس­های Russula، Cortinarius،  Lactarius) با دیگر گونه‌های همین جنس­ها موجود در Genbank با روش بیشینه تشابه و اعداد موجود در محل انشعاب نشان دهنده‌ی درصد تایید خوشه بندی با 1000 بار تکرار نمونه‌گیری می‌باشد. Saccharomyces cerevisiae به عنوان خارج گروه به کار برده شده است. نتایج مولکولی این پژوهش نشان داد که 15 گونه از قارچ­های همزیست اکتومیکوریز شناسایی شدند که از 5 جنس Russula، Cortinarius، Inosperma، Lactarius و Hebeloma می­باشند که جنس­های Russula و Cortinarius بیشترین فراوانی را داشته­اند. همچنین از این 15 گونه 6 گونه Russula chloroides، Russula delica، Russula brevipes، Russula faginea، Cortinarius collinitus و Lactarius subdulcis خاصیت خوراکی داشته­اند که از میان دو گونهRussula delica  وCortinarius collinitus  علاوه بر ارزش خوراکی، دارای خواص دارویی و اقتصادی نیز می‌باشند. به­علاوه قارچ Lactarius hepaticus دیگر گونه دارویی شناسایی شده بود که خاصیت دارویی آنتی­اکسیدانی داشته است که در مجموع نتایج کلی نشان داد سه گونه Russula delica، Cortinarius collinitus وLactarius hepaticus دارای خواص دارویی مستند می‌باشند که دو گونه اول علاوه بر آن، ارزش خوراکی نیز دارند. سه گونه Inosperma adaequata، Cortinarius trivialis و Lactarius chrysorrheus خاصیت سمی داشته­اند و نکته جالب، خاصیت مابقی قارچ­ها ناشناخته­اند. نتایج این پژوهش نشان داد که جنگل‌های راش ایران میزبان تنوع قابل توجهی از قارچ‌های اکتومیکوریز با کارکردهای خوراکی، دارویی و سمی هستند. شناسایی این گونه‌ها علاوه بر غنای دانش بوم‌شناسی جنگل، می‌تواند مبنایی برای مطالعات بیشتر در زمینه پتانسیل دارویی و اقتصادی قارچ‌های بومی فراهم آورد. پیشنهاد می­شود با توجه به پراکنش انواع قارچ­های دارویی، استخراج انواع متابولیت­ها از منابع بومی جنگل ایران با استفاده از شرکت­های دانش­بنیان مورد توجه قرار بگیرد.|

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Edible, poisonous, medicinal, and economically valuable agaric mushrooms symbiotic with oriental beech (Fagus oreintalis Lipsky)

نویسندگان [English]

  • Hamed Aghajani 1
  • Seyed Mohamamd Hojjati 2
  • Mohammad Ali Tajick-Ghanbari 3
  • Mohammad Reza Pourmajidian 4
  • Ali Borhani 5
1 ssistant professor, Department of Forest Sciences and Engineering, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
2 professor, Department of Forest Sciences and Engineering, Sari Agricultural Sciences and Natural Resources University, Sari, I. R. Iran & Visiting Scientist, Department of Silviculture and Forest Ecology of Temperatec Zones, Georg-August- Göttingen University, Göttingen- Germany.
3 Associate professor, Department of Plant protection, Sari Agricultural Sciences and Natural Resources University, Sari, I. R. Iran
4 professor, Department of Forest Sciences and Engineering, Sari Agricultural Sciences and Natural Resources University, Sari, I. R. Iran
5 Faculty Member of Agriculture and Natural Resources Research Center of Mazandaran, Passand Forest and Rangeland Research Station, Behshar, I. R. Iran
چکیده [English]

Background and Objectives: The Hyrcanian forests of northern Iran, a UNESCO World Heritage site, represent a unique and ancient temperate ecosystem dominated by the climax species Oriental Beech (Fagus orientalis). The health and ecological succession of these forests are critically dependent on soil organisms, particularly ectomycorrhizal (ECM) fungi. These fungi form a vital symbiotic relationship with beech roots, where the fungal hyphae vastly increase the root system's surface area, enhancing nutrient cycling and protecting the host from pathogens and drought. While traditional mycological surveys based on mushroom collection are valuable, they often miss species that fruit infrequently or remain below ground. Therefore, modern molecular methods are essential for accurately inventorying the active symbiotic community. This study was therefore designed to address the knowledge gap regarding the ECM community associated with F. orientalis. The objectives were: (1) to molecularly identify the agaric ECM fungi associated with the roots of Oriental Beech trees in the Sangdeh forests; (2) to determine the edible, toxic, and medicinal potential of the identified species based on scientific literature; and (3) to provide a foundational dataset for future ecological and biotechnological research.
Materials and Methods: The study was conducted in the Sangdeh forests of Mazandaran, Iran, across an elevation range of 1200 to 2100 meters, an area characterized by high rainfall and a mix of beech, hornbeam, and maple trees. A total of 45 F. orientalis trees were sampled across this altitudinal gradient. Fine root samples were collected from the top 10 cm of soil, where ECM activity is highest. In the laboratory, individual ECM root tips were sorted based on morphology. DNA was extracted using the CTAB method, which is effective for fungal tissues. The Internal Transcribed Spacer (ITS) region, the official DNA barcode for fungi, was amplified via PCR using the primers ITS1F and ITS4/ITS4B. PCR products were purified and subjected to Sanger sequencing. The resulting DNA sequences were edited in BioEdit and identified by comparison to the NCBI GenBank database (≥98% similarity threshold). A phylogenetic tree was constructed using the Maximum Likelihood method, with the most appropriate nucleotide substitution model selected based on the Akaike Information Criterion (AIC). The statistical confidence of the tree's branches was assessed with 1000 bootstrap replicates. Saccharomyces cerevisiae was used as the outgroup.
Results: The molecular analysis led to the identification of 15 distinct species of ectomycorrhizal agaric fungi, distributed across 5 genera: Russula, Cortinarius, Inosperma, Lactarius, and Hebeloma. The dominance of Russula and Cortinarius in both species richness and frequency is consistent with findings from other temperate beech forests globally, confirming their strong symbiotic affinity with this host. A comprehensive review of scientific literature allowed for the functional categorization of these 15 species. Six were identified as edible: Russula chloroides, R. delica, R. brevipes, R. faginea, Cortinarius collinitus, and Lactarius subdulcis. Among these, Russula delica and Cortinarius collinitus are particularly noteworthy, as they are also reported to possess valuable medicinal properties, with compounds showing antimicrobial and anti-tumor activities, respectively. An additional species, Lactarius hepaticus, was identified as having documented medicinal value due to its antioxidant compounds, bringing the total of medicinal fungi to three. In contrast, three species—Inosperma adaequata, Cortinarius trivialis, and Lactarius chrysorrheus—were identified as poisonous. The co-occurrence of these toxic fungi with valuable edible species highlights the significant risks of mycetism (mushroom poisoning) for local foraging communities and underscores the critical need for accurate identification.A highly significant finding of this study was that the properties of four species (Russula integriformis, Cortinarius rigens, C. alboaggregatus, and Hebeloma bulbiferum) remain uncharacterized. These fungi represent a scientific frontier and warrant prioritization for future chemical screening, as novel bioactive compounds are frequently discovered in lesser-known fungal species. While broader national surveys like that of Ghobad-Nejhad et al. (2022) provide an essential overview of Iranian mycoflora, our study provides the first host-specific, root-level confirmation of several of these species with Fagus orientalis, strengthening the ecological understanding of these precise associations. It should be noted, however, that this study provides a snapshot of the ECM community during a single sampling period; fungal community composition can exhibit significant seasonal variations which were not captured. The phylogenetic analysis provided robust support for our taxonomic identifications, confirming that all major genera formed well-supported monophyletic clades, often with bootstrap values exceeding 95% at key nodes, thereby validating the species-level assignments.
Conclusion: This study provides a precise, molecular-based inventory of the ectomycorrhizal agaric community associated with Fagus orientalis in the studied region. The results reveal a rich and functionally diverse community, confirming the co-existence of valuable edible and medicinal fungi alongside dangerous poisonous species. This underscores the dual importance of this below-ground biodiversity: its essential ecological role in maintaining forest health and resilience, and its significant potential as a source of novel natural products. The conservation of these fungal communities is crucial. Further research, particularly the chemical analysis of the uncharacterized species and the validation of medicinal properties in local populations, is highly recommended and could pave the way for sustainable applications through knowledge-based enterprises.
 

کلیدواژه‌ها [English]

  • Soil biology
  • Ectomycorrhiza
  • Agaric mushroom
  • Ecology
  • Medicinal mushroom
  1. Agerer, R., 1991. Characterization of ectomycorrhiza. In: Isaac, S. (ed.) Methods in Microbiology, Vol. 23. Academic Press, pp. 25-73.
  2. Aghajani, H., Farashiani, M.E., Tajick Ghanbary, M.A. and Mosazadeh, S.A., 2020. Diversity of medicinal, edible, and poisonous fungi located on the deadwood of beech and their uses. Iranian Journal of Forest and Range Protection Research, 18(1), pp. 79-92. (In Persian). DOI: 10.22092/ijfrpr.2020.127576.1393.
  3. Aghajani, H., Hojjati, S.M., Tajick-Ghanbari, M.A., Puormajidian, M.R. and Borhani, A., 2019. Molecular identification of ectomycorrhizal fungal communities associated with oriental beech trees (Fagus orientalis Lipsky) in Hyrcanian forest of Iran. Iranian Journal of Science and Technology, Transactions A: Science, 43(1), pp. 25-32. DOI: 10.1007/s40995-017-0435-2.
  4. Alikhani, H. and Ghorchiani, M., 2012. Mycorrhizae: Sustainable Agriculture and Forestry. Jahad-e Daneshgahi Press. (In Persian).
  5. Alvandi, H., Hatamian-Zarmi, A., Hosseinzadeh, B.E., Mokhtari-Hosseini, Z.B., Langer, E. and Aghajani, H., 2021. Improving the biological properties of Fomes fomentarius MG835861 exopolysaccharide by bioincorporating selenium into its structure. Carbohydrate Polymer Technologies and Applications, 2, p. 100159. DOI: 10.1016/j.carpta.2021.100159.
  6. Anonymous, 2010. Management Plan of District Felord. Forest, Range and Watershed Management Organization. (In Persian).
  7. Bau, T., Bao, H.Y. and Li, Y., 2014. A revised checklist of poisonous mushrooms in China. Mycosystema, 33(3), pp. 517-548. (In Chinese).
  8. Boa, E.R., 2004. Wild edible fungi: a global overview of their use and importance to people. Food and Agriculture Organization (FAO) Press.
  9. Cui, L. and Mu, L.Q., 2016. Ectomycorrhizal communities associated with Tilia amurensis trees in natural versus urban forests of Heilongjiang in northeast China. Journal of Forestry Research, 27(2), pp. 401-406. DOI: 10.1007/s11676-015-0158-1.
  10. Dai, Y.C. and Yang, Z.L., 2008. A revised checklist of medicinal fungi in China. Mycosystema, 27(6), pp. 801-824. (In Chinese).
  11. Dai, Y.C., Zhou, L.W., Yang, Z.L., Wen, H.A., Bau, T. and Li, T.H., 2010. A revised checklist of edible fungi in China. Mycosystema, 29(1), pp. 1-21. (In Chinese).
  12. Farooq, M., Akram, A., Afzal, R. and Nazir, K.S., 2013. Ethno-morphological studies of mushrooms collected from Soon valley. IOSR Journal of Pharmacy and Biological Sciences, 8(5), pp. 5-11.
  13. Gardes, M. and Bruns, T.D., 1993. ITS primers with enhanced specificity for basidiomycetes‐application to the identification of mycorrhizae and rusts. Molecular Ecology, 2(2), pp. 113-118. DOI: 10.1111/j.1365-294X.1993.tb00005.x.
  14. Gardes, M. and Bruns, T.D., 1996. Community structure of ectomycorrhizal fungi in a Pinus muricata forest: above-and below-ground views. Canadian Journal of Botany, 74(10), pp. 1572-1583. DOI: 10.1139/b96-190.
  15. Giri, S., Biswas, G., Pradhan, P., Mandal, S.C. and Acharya, K., 2012. Antimicrobial activities of basidiocarps of wild edible mushrooms of West Bengal, India. International Journal of PharmTech Research, 4(4), pp. 1554-1560.
  16. He, M.Q., Wang, M.Q., Chen, Z.H., Deng, W.Q., Li, T.H., Vizzini, A., Jeewon, R., Hyde, K.D. and Zhao, R.L., 2022. Potential benefits and harms: A review of poisonous mushrooms in the world. Fungal Biology Reviews, 42, pp. 56-68. DOI: 10.1016/j.fbr.2022.06.002.
  17. Heydarian, M. and Hatamian-Zarmi, A., 2016. Molecular identification of Ganoderma lucidum from Iran. Rostaniha, 17(2), pp. 188-192. (In Persian). DOI: 10.22092/botany.2017.109434.
  18. Horton, B.M., Glen, M., Davidson, N.J., Ratkowsky, D., Close, D.C., Wardlaw, T.J. and Mohammed, C., 2013. Temperate eucalypt forest decline is linked to altered ectomycorrhizal communities mediated by soil chemistry. Forest Ecology and Management, 302, pp. 329-337. DOI: 10.1016/j.foreco.2013.04.006.
  19. Hosseini, S.Z., Ismaeili, A., Bazgir, E., Darvishnia, M. and Mahmoodi, G.A., 2010. Identification of medicinal and poisonous mushroom from Khorramabad, Iran. Yafte, 11(5), pp. 75-83. (In Persian).
  20. Huang, J., Nara, K., Zong, K., Wang, J., Xue, S., Peng, K., Shen, Z. and Lian, C., 2014. Ectomycorrhizal fungal communities associated with Masson pine (Pinus massoniana) and white oak (Quercus fabri) in a manganese mining region in Hunan Province, China. Fungal Ecology, 9, pp. 1-10. DOI: 10.1016/j.funeco.2014.01.001.
  21. Huang, Y.T., Zou, F., Sun, Q., Ye, D.W., Wang, K. and Liu, C.L., 2018. Extraction and antioxidant activities of polysaccharides from Cortinarius collinitus fruiting bodies. Acta Edulis Fungi, 25(2), pp. 72-78. DOI: 10.16488/j.cnki.1005-9873.2018.02.010.
  22. Ishida, T.A., Nara, K. and Hogetsu, T., 2007. Host effects on ectomycorrhizal fungal communities: insight from eight host species in mixed conifer–broadleaf forests. New Phytologist, 174(2), pp. 430-440. DOI: 10.1111/j.1469-8137.2007.02016.x.
  23. Khoshru, B., Fallah Nosratabad, A., Khosravi, H., Asgharzadeh, A. and Faridian, L., 2025. Enhancing agricultural productivity using PGPR and nanoparticles: mechanisms, challenges, and future directions. Journal of Soil Biology, 12(2), pp. 279-313. DOI: 10.22092/sbj.2025.368425.277.
  24. Kostić, M., Ivanov, M., Fernandes, Â., Pinela, J., Calhelha, R.C., Glamočlija, J., Barros, L., Ferreira, I.C., Soković, M. and Ćirić, A., 2020. Antioxidant extracts of three Russula genus species express diverse biological activity. Molecules, 25(18), p. 4336. DOI: 10.330/molecules25184336.
  25. Kumar, V., Kerketta, A. and Rajhansa, K.C., 2019. Diversity of wild edible mushrooms in Korea district of Chhattisgarh. Journal of Pharmacognosy and Phytochemistry, 8(6), pp. 2389-2392.
  26. Mao, X.L., 2006. Poisonous mushrooms and their toxins in China. Mycosystema, 25(3), pp. 345-363.
  27. Mirzaei, J., Jaafarian, N., Jafari, M. and Hoseinzadeh, J., 2023. Biodiversity of Arbuscular Mycorrhizal Fungi in Natural and Agricultural Land and their relationship with soil properties in Zagros Forest. Journal of Soil Biology, 11(1), pp. 47-62. DOI: 10.22092/sbj.2023.361383.246.
  28. Mishra, A. and Shankar, S., 2025. Edible mushrooms for improved human health, food security and environmental sustainability: A critical review. Science of The Total Environment, 995, p. 180093. DOI: 10.1016/j.scitotenv.2025.180093.
  29. Nadian Ghomsheh, H., 2025. Phosphorus uptake and transport mechanism in symbiotic plants with arbuscular mycorrhizal fungi (Knowns and unknowns). Journal of Soil Biology, 12(2), pp. 155-190. DOI: 10.22092/sbj.2024.366288.267.
  30. Niu, P., Tan, X., Zhou, X., Xu, X., Zhang, G., Peng, L. and Bai, M., 2023. Novel polysaccharide identified from Cortinarius purpurascens demonstrated anti-fibrosis effects in cardiac fibroblasts. Food Bioscience, 56, p. 103157. DOI: 10.1016/j.fbio.2023.103157.
  31. Ouzouni, P.K., Petridis, D., Koller, W.D. and Riganakos, K.A., 2009. Nutritional value and metal content of wild edible mushrooms collected from West Macedonia and Epirus, Greece. Food Chemistry, 115(4), pp. 1575-1580. DOI: 10.1016/j.foodchem.2009.02.014.
  32. Peterson, R.L., Massicotte, H.B. and Melville, L.H., 2004. Mycorrhizas: Anatomy and Cell Biology. NRC Research Press.
  33. Reis, F.S., Pereira, E., Barros, L., Sousa, M.J., Martins, A. and Ferreira, I.C., 2011. Biomolecule profiles in inedible wild mushrooms with antioxidant value. Molecules, 16(6), pp. 4328-4338. DOI: 10.3390/molecules16064328.
  34. Sakakibara, S.M., Jones, M.D., Gillespie, M., Hagerman, S.M., Forrest, M.E., Simard, S.W. and Durall, D.M., 2002. A comparison of ectomycorrhiza identification based on morphotyping and PCR-RFLP analysis. Mycological Research, 106(8), pp. 868-878. DOI: 10.1017/S0953756202006263.
  35. Schoch, C.L., Seifert, K.A., Huhndorf, S., Robert, V., Spouge, J.L., Levesque, C.A., Chen, W. and Fungal Barcoding Consortium, 2012. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences, 109(16), pp. 6241-6246. DOI: 10.1073/pnas.1117018109.
  36. Siddiqui, Z.A. and Pichtel, J., 2008. Mycorrhizae: an overview. In: Siddiqui, Z.A. and Pichtel, J. (eds.) Mycorrhizae: sustainable agriculture and forestry. Springer, pp. 1-35. DOI: 10.1007/978-1-4020-8770-7_1.
  37. Smith, J., Rowan, N. and Sullivan, R., 2002. Medicinal mushrooms: their therapeutic properties and current medical usage with special emphasis on cancer treatments. Cancer Research UK.
  38. Smith, J.E., Molina, R., Huso, M.M., Luoma, D.L., McKay, D., Castellano, M.A., Lebel, T. and Valachovic, Y., 2002. Species richness, abundance, and composition of hypogeous and epigeous ectomycorrhizal fungal sporocarps in young, rotation-age, and old-growth stands of Douglas-fir (Pseudotsuga menziesii) in the Cascade Range of Oregon, USA. Canadian Journal of Botany, 80(2), pp. 186-204. DOI: 10.1139/b02-003.
  39. Straatsma, G., François, A. and Simon, E., 2001. Species richness, abundance, and phenology of fungal fruit bodies over 21 years in a Swiss forest plot. Mycological Research, 105(5), pp. 515-523. DOI: 10.1017/S0953756201004154.
  40. Tabibzadeh, F., Alvandi, H., Hatamian-Zarmi, A., Kalitukha, L., Aghajani, H. and Ebrahimi-Hosseinzadeh, B., 2024. Antioxidant activity and cytotoxicity of exopolysaccharide from mushroom Hericium coralloides in submerged fermentation. Biomass Conversion and Biorefinery, 14(21), pp. 26953-26963. DOI: 10.1007/s13399-022-03386-0.
  41. Varghese, R., Dalvi, Y.B., Lamrood, P.Y., Shinde, B.P. and Nair, C.K.K., 2019. Historical and current perspectives on therapeutic potential of higher basidiomycetes: an overview. 3 Biotech, 9(10), p. 362. DOI: 10.1007/s13205-019-1886-2.
  42. White, T.J., 1990. Analysis of phylogenetic relationships by amplification and direct sequencing of ribosomal RNA genes. In: Innis, M.A., Gelfand, D.H., Sninsky, J.J. and White, T.J. (eds.) PCR protocols: a guide to methods and applications. Academic Press, pp. 315-322.
  43. Willis, K.J. (ed.), 2018. State of the World's Fungi 2018. Royal Botanic Gardens, Kew.
  44. Wu, F., Zhou, L.W., Yang, Z.L., Bau, T., Li, T.H. and Dai, Y.C., 2019. Resource diversity of Chinese macrofungi: edible, medicinal and poisonous species. Fungal Diversity, 98(1), pp. 1-76. DOI: 10.1007/s13225-019-00432-7.
  45. Yaltirak, T., Aslim, B., Ozturk, S. and Alli, H., 2009. Antimicrobial and antioxidant activities of Russula delica Fr. Food and Chemical Toxicology, 47(8), pp. 2052-2056. DOI: 10.1016/j.fct.2009.05.029.
  46. Zamani, S.M., 2014. Identification of ectomycorrhizal fungi associated with Oak trees in some forests of Iran and investigation of metabolic and transcriptional profiles in Quercus castaneifolia ectmycorrhizal roots. PhD Thesis. Tarbiat Modares University. (In Persian).
  47. Zhao, S., Zhao, Y., Li, S., Zhao, J., Zhang, G., Wang, H. and Ng, T.B., 2010. A novel lectin with highly potent antiproliferative and HIV-1 reverse transcriptase inhibitory activities from the edible wild mushroom Russula delica. Glycoconjugate Journal, 27(2), pp. 259-265. DOI: 10.1007/s10719-009-9274-5.
  48. Zhou, Z., Miwa, M., Matsuda, Y. and Hogetsu, T., 2001. Spatial distribution of the subterranean mycelia and ectomycorrhizae of Suillus grevillei genets. Journal of Plant Research, 114(2), pp. 179-185. DOI: 10.1007/PL00013981 .