تأثیر رطوبت خاک بر ‌تخریب زیستی هیدروکربن‌های آروماتیک چندحلقه‌ای (PAHs) توسط سویه‌های باکتریایی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 محقق، مؤسسه تحقیقات خاک و آب، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران.

2 استاد، بخش تحقیقات بیولوژی و بیوتکنولوژی، مؤسسه تحقیقات خاک و آب، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران.

3 محقق پسادکترا، بخش تحقیقات بیولوژی و بیوتکنولوژی، مؤسسه تحقیقات خاک و آب، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران.

10.22092/sbj.2025.370068.282

چکیده

آلودگی خاک با هیدروکربن‌های آروماتیک چندحلقه‌ای (PAHs) به‌دلیل پایداری بالا، سمیت زیاد و تجمع زیستی، یکی از چالش‌های زیست‌محیطی مهم به‌شمار می‌رود. پالایش میکروبی با بهره‌گیری از ریزجانداران تجزیه‌کننده، روشی مؤثر و پایدار برای کاهش این آلاینده‌ها محسوب می‌شود. در این پژوهش، تأثیر سطوح مختلف رطوبت خاک با چهار سطح از تخلیه آب آبیاری به مقدار %30، %50، %70 و %90 آب قابل استفاده و سه سویه باکتریایی منتخب (Pseudomonas alcaligenes، Pseudomonas stutzeri و Enterobacter cloacae) بر کارایی تخریب زیستی PAHs در یک خاک لوم‌رسی آلوده به مواد نفتی، در شرایط آزمایشگاهی و در قالب طرح فاکتوریل با پایه بلوک‌های کامل تصادفی (RCBD) در سه تکرار انجام گرفت. نتایج نشان داد که رطوبت خاک اثر معناداری بر کاهش غلظت کل PAHs داشت (P<0.05) و بیشترین کاهش غلظت (%56/8) در رطوبت نزدیک به ظرفیت زراعی مشاهده شد. اگرچه اثر آماری سویه‌های باکتری بر کاهش غلظت کل PAHs در سطح پنج درصد معنی‌دار نشد، اما کاهش‌های مشاهده‌شده (۴۵ تا ۵۱ درصد) از نظر زیستی و کاربردی قابل توجه بوده و نشان‌دهنده پتانسیل این سویه‌ها است. یافته‌ها بر اهمیت بهینه‌سازی هم‌زمان شرایط محیطی و انتخاب سویه‌های میکروبی مناسب در افزایش اثربخشی پالایش میکروبی تأکید دارند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The impact of soil moisture on the bioremediation of polycyclic aromatic hydrocarbons (PAHs) by bacterial strains

نویسندگان [English]

  • Reza Mohammadikia 1
  • Alireza Fallah Nosratabad 2
  • Bahman Khoshrou 3
1 Researcher, Soil and Water Research Institute (SWRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
2 Professor, Department of Biology and Biotechnology Research, Soil and Water Research Institute (SWRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
3 Postdoctoral Researcher, Department of Biology and Biotechnology Research, Soil and Water Research Institute (SWRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
چکیده [English]

Background and Objectives: Soil contamination by petroleum hydrocarbons, particularly Polycyclic Aromatic Hydrocarbons (PAHs), due to industrial activities, poses significant environmental and health risks. PAHs are persistent, toxic organic compounds, and their presence in soil alters its physicochemical and biological properties, threatening ecosystem health and food security. Bioremediation, utilizing microorganisms to degrade pollutants, offers an eco-friendly and cost-effective solution. The efficacy of bacterial degradation of PAHs is, however, critically influenced by environmental factors, especially soil moisture, which affects microbial activity, nutrient and oxygen availability, and pollutant accessibility. While optimal moisture is known to enhance degradation, a comprehensive understanding of the interactive effects of specific bacterial strains and varying moisture levels on PAH bioremediation remains incomplete. This study aimed to address this gap by investigating the effects of different soil moisture levels and three selected bacterial strains on PAH bioremediation in a contaminated loamy-clay soil under laboratory conditions. The main hypothesis was that both bacterial strain type and soil moisture level, along with their interaction, would significantly impact PAH degradation efficiency.
Materials and Methods: A factorial pot experiment based on a Randomized Complete Block Design (RCBD) with three replicates was conducted. Treatments included four bacterial applications (three individual strains: Pseudomonas alcaligenes (B1), Pseudomonas stutzeri (B2), Enterobacter cloacae (B3); and an uninoculated control (B0)) and four soil moisture levels. Surface soil (0–30 cm) from an oil-contaminated site near Tehran refinery was sieved, characterized (loamy-clay), and autoclaved at 121°C for 60 minutes. Bacterial strains were cultured in Nutrient Broth, harvested, washed, and resuspended to an OD600 of 0.7 (approx. 1.5–2.8 × 10⁹ CFU/mL). Thirty mL of inoculum (or sterile water for control) were added to each pot. The four moisture levels were: I1 (30% depletion of available water, AWC), I2 (50% AWC depletion), I3 (70% AWC depletion), and I4 (90% AWC depletion), maintained daily by weighing. Pots were kept at 25 ± 2°C. After a 20-day bacterial stabilization period, the moisture levels were imposed for 65 days. Bacterial populations were enumerated (CFU/g dry soil) on Nutrient Agar. Concentrations of 14 target PAHs were determined by HPLC (Agilent 1260, fluorescence detector, C18 column) following USEPA method 8310 after Soxhlet extraction (hexane/acetone 1:1) and silica/alumina column cleanup. Data were analyzed by two-way ANOVA, and means were compared by Duncan's Multiple Range Test (P≤0.05) using SAS and SPSS software.
Results: The initial concentration of total PAHs in the soil was 33.4 mg/kg, classifying it as highly contaminated. Fluoranthene was the dominant compound among the 14 PAHs analyzed. Total bacterial populations did not show significant changes across treatments throughout the experiment. However, the performance of the inoculated strains in reducing PAH concentrations was notable; treatments with P. alcaligenes (B1) and E. cloacae (B3) achieved total PAH reductions of 45.65% and 50.57%, respectively, although these differences were not statistically significant (P>0.05). In contrast, soil moisture had a statistically significant effect (P<0.05), with the highest PAH reduction (56.8%) observed in the optimal moisture treatment (I1). Analysis of individual compounds revealed that lighter PAHs, such as phenanthrene and fluorene, were more biodegradable. Conversely, the concentrations of heavier and more complex compounds like benzo(a)pyrene increased in some treatments, likely due to the incomplete degradation of larger molecules.
Conclusion: The present study demonstrated that soil moisture is the main determining factor in enhancing the biodegradation efficiency of polycyclic aromatic hydrocarbons (PAHs), with the greatest reduction of contaminants observed at moisture levels close to field capacity. Optimal moisture improves soil aeration, increases contaminant mobility, and provides a suitable environment for microbial activity, thereby facilitating effective degradation of pollutants. Regarding bacterial strains, Enterobacter cloacae and Pseudomonas alcaligenes exhibited a high potential in reducing PAH concentrations, highlighting the importance of functional capacity and adaptability of microorganisms rather than merely their population size. However, the observed increase in the concentration of certain toxic compounds in some treatments raises the possibility of incomplete degradation and the formation of hazardous intermediates. Overall, successful microbial remediation of petroleum-contaminated soils requires simultaneous consideration of optimal moisture, effective microbial strain selection, and precise monitoring of contaminant behavior. Future studies should employ more specific indicators such as catabolic genes and bioavailability assays, and also take into account the impact of soil sterilization on contaminant structure and bioavailability. It should be noted that although soil autoclaving in this study was necessary to accurately assess the performance of inoculated strains, it may have influenced the initial bioavailability of PAHs.

کلیدواژه‌ها [English]

  • Microbial Remediation
  • Soil Moisture
  • Polycyclic Aromatic Hydrocarbons (PAHs)
  • Oil Pollution
  • Biodegradation
  1. Akinpelu, A.A., Salami, T.O., Olawale, O.O., Olayiwola, H.A., Atoyebi, D.V., Oyerinde, A.A., Olima, B.O.O., Adebayo, O.S., Oluwalanu, F.A. and Akinhanmi, T.F. 2024. Advanced bioremediation strategies for petroleum hydrocarbon contaminated soils. Frontiers in Environmental Science 12: 1354422. doi: 10.3389/fenvs.2024.1354422
  2. Alef, K. and Nannipieri, P. (Eds.). 1995. Methods in Applied Soil Microbiology and Biochemistry. Academic Press, London.
  3. Ali, N., Khan, M.I., Shah, M., Ullah, S., Zafar, M., Iqbal, A., Tariq, M., Al-Wabel, M.I., Al-Qahtani, N. and Alharbi, M.S. 2023. A comprehensive review on petroleum hydrocarbon contamination in soil: Impacts and remediation. Environmental Science and Pollution Research 30: 79005–79031. doi: 10.1007/s11356-023-27357-8
  4. Al-Mailem, D. M., Al-Deieg, M., Eliyas, M., & Radwan, S. S. (2017). Biostimulation of indigenous microorganisms for bioremediation of oily hypersaline microcosms from the Arabian Gulf Kuwaiti coasts. Journal of Environmental Management, 193, 576–583.
  5. Bastos, A. C., & Magan, N (2009). Trametes versicolor: Potential for atrazine bioremediation in calcareous clay soil, under low water availability conditions. International Biodeterioration and Biodegradation, 63, 389–394.
  6. Chen, L., Zhang, Y., Wang, S., Li, J., He, L. and Sheng, X.F. 2023. Biodegradation of PAHs in soil environments: microbial strategies and environmental interactions. Environmental Pollution 325: 121305. doi: 10.1016/j.envpol.2023.121305
  7. Dane, J.H. and Topp, G.C. (Eds.). 2002. Methods of Soil Analysis, Part 4: Physical Methods. Soil Science Society of America Book Series No. 5.1 SSSA, ASA, Madison, WI.
  8. Ebrahimi, M. (2010). Isolation, purification and identification of oil decomposing bacteria from contaminated soils and the study of their efficiency. M.Sc. Thesis, Department of Soil Science, Islamic Azad University of Karaj Branch. (In Persian).
  9. Farahani, M., & Mirbagheri, S. A. (2012). Application of indigenous microorganisms for reducing petroleum pollution in soil. Journal of Environmental Sciences, University of Tehran. (In Persian).
  10. Ghasemi Piranloo, M., et al. (2019). Survival of Enterobacter cloacae in different solid carriers. Journal of Water and Soil Science, University of Tabriz. (In Persian).
  11. Haritash, A.K. and Kaushik, C.P. 2009. Biodegradation aspects of Polycyclic Aromatic Hydrocarbons (PAHs): A review. Journal of Hazardous Materials 169(1-3): 1–15. doi: 10.1016/j.jhazmat.2009.03.137
  12. Hashemi, N., Pourbabaee, A. A., Shariati, S., & Yadzanfar, N. (2025). Rapid phenanthrene biodegradation in highly calcareous saline sodic soil using an artificial halophile bacterial consortium. International Journal of Environmental Science and Technology, 22(3), 1817-1828.
  13. Hoseini, M., et al. (2020). Study on the effect of moisture and bacterial strains on bioremediation of oil-contaminated soils. Iranian Journal of Environmental Sciences. (In Persian).
  14. Karimi, M., Soleimani, N., & Azizi, F. (2020). Effect of phytoremediation and Pseudomonas aeruginosa treatment on removal of petroleum compounds from soil. Environmental and Sustainable Development Quarterly. (In Persian).
  15. Kostka, J. E., et al. (2002). Robust hydrocarbon degradation and dynamics of bacterial communities during nutrient-enhanced oil spill bioremediation. Applied and Environmental Microbiology, 68, 6256.
  16. Kumar, A., & Singh, R. (2020). Role of Rhodococcus indonesiensis in biodegradation of petroleum hydrocarbons in contaminated soils. International Journal of Environmental Research, 14(3), 201-210.
  17. Kumar, A., Singh, A., Singh, N., Bishnoi, K. and Bishnoi, N.R. 2023. Hybrid bioremediation technologies for the remediation of petroleum hydrocarbon-contaminated soils: A review. Chemosphere 311(Pt 2): 136962. doi: 10.1016/j.chemosphere.2022.136962
  18. Li, J., Zhang, J., Li, S., Wang, Y. and Liu, J. 2023. Key factors affecting the bioremediation of petroleum-hydrocarbon-contaminated soil: A review. Molecules 28(3): 1362. doi: 10.3390/molecules28031362
  19. Li, J., Zhang, Y., Zhao, J., & Wang, F. (2021). Biodegradation of PAHs in saline-alkali soil using Sphingomonas immobilized on biochar. Environmental Pollution, 268, 115749.
  20. Li, X., Zhang, Y., & Wang, J. (2021). Enhanced biodegradation of PAHs in saline soils using Sphingomonas sp. immobilized on biochar. Environmental Pollution, 289, 117920. https://doi.org/10.1016/j.envpol.2021.117920
  21. Li, Y., Wang, J., Chen, Y., & Zhang, X. (2023). Functional responses of microbial communities to hydrocarbon contamination and soil moisture variation. Science of The Total Environment, 870, 161988.
  22. Malawska, M. and Wilkomirski, B. 2001. An analysis of soil pollution by petroleum products in the surroundings of a HGV service station. Water, Air, and Soil Pollution 127(1-4): 257-267. doi: 10.1023/A:1005278615802
  23. Mao, X., Jiang, R., Xiao, W. and Wu, J. 2012. Influence of soil moisture content on bioremediation of PAH-contaminated soil. Chemosphere 89(5): 597–603. doi: 10.1016/j.chemosphere.2012.05.081
  24. Margesin, R., et al. (2007). Microbial communities and their response to contamination in alpine soils. FEMS Microbiology Ecology, 59(2), 307-317.
  25. Mohsenzadeh, F. (2014). Evaluation of bioremediation efficiency of petroleum pollution by indigenous bacterial strains in cold regions (Case study: Tabriz Refinery). Iranian Journal of Cell Biology. (In Persian).
  26. Moradi, S., Sarikhani, M. R., Beheshti Ale-Agha, A., Reyhanitabar, A., Alavi-kia, S. S., & Sharifi, R. (2024). Effects of Long-term Oil Pollution on Soil Microbial Respiration and β-glucosidase Activity. Journal of Soil Biology, 11(2), 213-230. https://doi.org/10.22092/sbj.2024.362697.254.
  27. Nkwe, D.O., Thekisoe, O.M.M. and Moloantoa, D.F.P. 2024. Impacts of petroleum hydrocarbon contamination on soil microbial diversity and functioning: A review. Environmental Advances 15: 100459. doi: 10.1016/j.envadv.2023.100459
  28. Page, A.L., Miller, R.H. and Keeney, D.R. (Eds.). 1982. Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties (2nd2). Agronomy Monograph No. 9. American Society of Agronomy, Soil Science Society of America,3 Madison, WI.
  29. Posada-Baquero, R., Semple, K. T., Ternero, M., & Ortega-Calvo, J.-J. (2022). Determining the bioavailability of benzo(a)pyrene through standardized desorption extraction in a certified reference contaminated soil. Science of the Total Environment, 803, Article 150025.
  30. Rahman, K.S.M., Megharaj, M., & Naidu, R. (2020). Bioremediation of contaminated sites: The influence of environmental factors on microbial degradation of pollutants. Environmental Technology & Innovation, 20, 101159.
  31. Safari, N., Razavi, S., & Karimi, L. (2017). Evaluation of indigenous bacteria efficiency in biodegradation of petroleum compounds. In Proceedings of the National Conference on Environment, Energy, and Sustainable Natural Resources. (In Persian).
  32. Sharma, B., Joshi, S., Kumar, S., Saxena, S. and Varma, A. 2023. Petroleum hydrocarbon contamination in soil: Bioremediation approaches and future outlook. Bioresource Technology Reports 22: 101423. doi: 10.1016/j.biteb.2023.101423
  33. Siles, J. A., & Margesin, R (2018). Insights into microbial communities mediating the bioremediation of hydrocarbon-contaminated soil from an Alpine former military site. Applied Microbiology and Biotechnology, 102(10), 4409–4421.
  34. Silva, R.M., Aguiar, M.S., Oliveira, L.M.S., Silva, V.L., Ferreira, S.L.C. and Sousa, E.M.L.S. 2020. Biodegradation of PAHs by bacterial consortia in contaminated soil: effect of different nutrients and surfactants. Biodegradation 31(1): 69–81. doi: 10.1007/s10532-019-09896-z
  35. Singh, P. and Fulekar, M.H. 2024. Recent advances in microbial degradation of polycyclic aromatic hydrocarbons. Bioresource Technology Reports 25: 101762. doi: 10.1016/j.biteb.2023.101762
  36. Sparks, D.L. (Editor-in-Chief), Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T. and Sumner, M.E. (Eds.). 1996. Methods of Soil Analysis, Part 3: Chemical Methods. Soil Science Society of America Book Series No. 5. SSSA, ASA, Madison, WI.
  37. S. Environmental Protection Agency (EPA). (2017). Bioremediation: using the activities of microorganisms and/or plants to treat contaminated soil and groundwater. Retrieved from EPA bioremediation overview pages.
  38. S. Environmental Protection Agency (U.S. EPA). (1996). Method 8310: Polynuclear Aromatic Hydrocarbons. Test Methods for Evaluating Solid Waste, Physical/Chemical Methods (SW-846). Washington, DC: U.S. EPA.
  39. Viñas, M., Sabaté, J., Espuny, M.J. and Solanas, A.M. 2005b. Microbial potential for bioremediation of PAH-contaminated soils: influence of soil matric potential and water content. Journal of Hazardous Materials 120(1–3): 127–134. doi: 10.1016/j.jhazmat.2004.12.033
  40. Viñas, M., Sabaté, J., Espuny, M.J., Solanas, A.M. and Grifoll, M. 2005a. Bioremediation of PAHs in soil by microbial consortia. Applied and Environmental Microbiology 71(3): 1347–1355. doi: 10.1128/AEM.71.3.1347-1355.2005
  41. Wang, X., et al. (2016). Effects of soil moisture on the biodegradation of polycyclic aromatic hydrocarbons (PAHs) by indigenous microorganisms. Environmental Science and Pollution Research, 23(2), 1234-1242.
  42. Wang, Z., Zhang, L., Li, Y., Liu, Y., Wang, Y. and Ma, F. 2024. Soil moisture regulation in bioremediation: microbial response and pollutant degradation. Science of the Total Environment 906: 167614. doi: 10.1016/j.scitotenv.2023.167614
  43. Zeynali, K., Shariati, S., & Pourbabaee, A. A. (2024). The role of effective oil-eating bacteria in the remediation of oil-contaminated soils (Case study: Bacillus genus). Journal of Soil Biology, 12(1), 105-139. https://doi.org/10.22092/sbj.2024.366140.266.
  44. Zeynali, K., Shariati, S., Pourbabaee, A. A., & Shorafa, M. (2025). The efficiency of oil-degrading and phosphate-solubilizing bacteria in phosphorus availability of a oil-contaminated calcareous soil. Journal of Soil Biology, 12(2), 191-212. https://doi.org/10.22092/sbj.2024.366874.268.
  45. Zeynali, K., Shariati, Sh., Pourbabaei, A. A., & Shorafa, M. (2024). Application of biosurfactant-producing and oil-degrading bacterial consortium in enhancing the hydraulic conductivity of TPH-contaminated soil. Iranian Journal of Water and Soil Research, 55(9), 1585–1599. (In Persian).
  46. Zhang, H., Liu, Y., Wen, J., & Wang, X. (2021). Effects of indigenous bacteria and soil moisture on bioremediation of petroleum-contaminated soils. Environmental Pollution, 284, 117464.