جداسازی، غربالگری و بررسی صفات محرک رشد گیاهی میکروارگانیسم‌های مقاوم به آرسنیک (V) & (III) و ارزیابی تأثیر جدایه‌های برتر بر خصوصیات مرفولوژیک گیاه پونه و گیاه‌پالایی خاک آلوده به آرسنیک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی ارشدگروه علوم و مهندسی خاک دانشکده کشاورزی و منابع طبیعی دانشگاه محقق اردبیلی

2 استادیار گروه علوم و مهندسی خاک دانشکده کشاورزی و منابع طبیعی دانشگاه محقق اردبیلی

چکیده

یکی از مهم­ترین راه­های افزایش راندمان گیاه­پالایی خاک­های آلوده به فلزات سنگین استفاده از میکروارگانیسم­های محرک رشد گیاهی مقاوم به این فلزات می­باشد. این ریزجانداران با بهبود رشد گیاه و افزایش میزان جذب فلزات سنگین می­توانند باعث افزایش میزان پایش خاک­های آلوده گردند. به­منظور انجام این تحقیق، چهار نمونه خاک آلوده به آرسنیک از اطراف معدن زرشوران شهرستان تکاب واقع در استان آذربایجان غربی تهیه و برخی خواص فیزیکی و شیمیایی در آنها اندازه­گیری گردید. از خاک­های تهیه شده میکروارگانیسم­های مقاوم به آرسنیک (III) و (V) جداسازی، غربالگری و بعضی از صفات محرک رشد گیاهی آنها تعیین شد. در نهایت به­منظور بررسی تأثیر میکروارگانیسم­های مقاوم و دارای صفات محرک رشدی بالا بر روی صفات مرفولوژیکی گیاه پونه، آزمایشی گلخانه­ای در قالب طرح کاملاً تصادفی با سه تکرار انجام شد. در این پژوهش از 4 نمونه خاک آلوده در مجموع 42 جدایه جداسازی شد و 19 جدایه متفاوت از نظر شکل، رنگ، حاشیه کلنی و سرعت رشد انتخاب گردید. نتایج آزمایش غربالگری نشان داد که تمامی جدایه­هاتوانایی رشد در غلظت­های مختلف آرسنیک سه ظرفیتی و پنج ظرفیتی را نداشتند. در میان میکروارگانیسم­های جداسازی شده، جدایه­های AHG-1، AHG-2 ، AHG-4 ، AHG-5 ،AHG-6 ، AHG-7 و AHG15 در همه­ی غلظت­های مورد بررسی آرسنیک سه ظرفیتی رشد کرده و در بین آنها جدایه­های AHG-5، AHG-6 بیشترین رشد را نشان دادند. در خصوص آرسنیک پنج ظرفیتی جدایه­های AHG-1،AHG-2، AHG-3 ،AHG-5،AHG-6،AHG-7، AHG10-، AHG-11و AHG-19 از جدایه­ها­ی مورد مطالعه در همه غلظت­ها رشد نموده و از بین آنها جدایه­ها­ی AHG-6، AHG-7 ،AHG-5 بیشترین رشد را نشان دادند. نتایج حاصل از ارزیابی صفات محرک رشدی در 10 جدایه مقاوم به غظت­های مختلف آرسنیک (III) و (V) نشان داد که کلیه این جدایه­ها توانایی تولید اکسین و توانایی حل­کنندگی فسفات­های معدنی نامحلول را داشتند. متوسط میزان تولید اکسین 38/1 میلی­گرم در لیتر و دامنه آن از 35/0 تا 41/3 میلی­گرم در لیتر بود. بیشترین و کمترین میزان حل­کنندگی فسفات­های معدنی نامحلول به ترتیب036/486 و 69/251 میلی­گرم در لیتر و مربوط به جدایه­های AHG-7 و AHG-10 بود. 6 جدایه توانایی حل­کنندگی ترکیبات نامحلول روی را دارا بوند که مؤثرترین جدایه در این خصوص AHG-7 بود. توانایی تولید سیدروفور در 5 جدایه مشاهده گردید که جدایه AHG10 بیشترین میزان این متابولیت را تولید نمود. از 10 جدایه مورد مطالعه تنها سه جدایه در حد کم و یک جدایه در حد متوسط توانایی تولید سیانید هیدروژن را داشتند. نتایج حاصل از آزمون گلخانه­ای پژوهش نشان داد که تلقیح گیاه پونه با جدایه­های برتر موجب افزایش معنی­دار تعداد برگ، سطح برگ، طول ساقه، انشعابات ساقه، حجم ریشه، وزن تر ریشه، وزن خشک ریشه، وزن تر اندام هوایی در یک خاک آلوده به آرسنیک شد. نتایج نشان داد که تاثیر مایه­زنی گیاه پونه با جدایه­های مورد مطالعه بر غلظت آرسنیک ریشه و اندام هوایی و میزان فاکتور انتقال آرسنیک در سطح احتمال یک درصد معنی­دار بود، طوری­که کاربرد جدایه­های مورد مطالعه باعث افزایش چشمگیر این شاخص­ها در گیاه پونه گردید. در این پژوهش گیاه پونه توانایی بالایی در انتقال عنصر آرسنیک از ریشه به اندام هوایی نشان داد. می­توان نتیجه­گیری کرد که جدایه­های دارای صفات محرک رشد گیاهی بالا و مقاوم به آرسنیک، با بهبود و افزایش رشد گیاه پونه، افزایش میزان جذب آرسنیک و فاکتور انتقال می­توانند در افزایش راندمان گیاه­پالایی یک خاک آلوده به آرسنیک با استفاده از این گیاه نقش مهمی ایفا نمایند. همچنین گیاه پونه می­تواند در پایش سبز خاک آلوده به آرسنیک نقش مفیدی را ایفا نماید.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of plant growth promoting traits of arsenic resistant bacteria and their effect on morphological properties of Origanum vulgare plant in an arsenic-polluted soil

نویسندگان [English]

  • L. Haydarpoor 1
  • A. A. SoltaniToolarood 2
  • E. GoliKalanpa 2
1
2
چکیده [English]

Application of plant growth promoting rhizobacteria (PGPR) increases the efficiency of phytoremediation in heavy metal polluted soil. In the present study, four arsenic-polluted soil samples were collected from around the Zarshooran mine in Tekab city located in the west part of Azarbaijan province. Forty two isolates were isolated from soil samples and nineteen isolates were selected according to the shape, color, margin of colony and growth rate. AHG-1, AHG-2, AHG-3, AHG-4, AHG-5, AHG-6, AHG-7, AHG-10, AHG-11, AHG-15 and AHG-6 isolates grew well in all arsenic concentrations but AHG-5, AHG-6 and AHG-7 had the greatest growth. Results showed that all selected isolates were able to produce auxin and solubilize inorganic phosphorus. The range of auxin production was 0.35-3.41 mg/l and the average value was 1.38 mg/l. The highest and lowest ability of inorganic phosphate solubilizing were 486.036 and 251.69 mg/l belonging to AHG-7 and AHG-10 isolates respectively. Six isolates were capable of solubilizing inorganic Zn whereas AHG-7 isolate was the most effective one. The ability of siderophore production was observed among 5 isolates that AHG10 was the most effective one. Four of ten isolates were able to produce low and moderate amount of hydrogen cyanide. In addition, a greenhouse experiment was conducted to evaluate the effect of arsenic-resistant bacteria on morphological characteristics of Oregano plant in a completely randomized design with three replications. Results of the greenhouse test showed that inoculation of Oregano with superior isolates significantly increased the leaf number, leaf surface, stem length, stem splits, root volume, root wet weight, root dry weight, shoot wet weight, and shoot dry weight of in an arsenic-polluted soil. Results also revealed that inoculation of Oregano with studied isolates notably (P≤0.01) increased root and shoot arsenic concentration and translocation factor. In this research Oregano plant showed great ability in transferring of arsenic from roots to shoots. It can be concluded that arsenic-resistant isolates with plant growth promoting ability increased the phytoremediation efficiency of arsenic-contaminated soil. It seems that Oregano can play a useful role in the remediation of arsenic-polluted soil.

کلیدواژه‌ها [English]

  • Arsenic pollution
  • Oregano
  • morphological properties
  • arsenic resistant microorganisms
  • plant growth promoting characteristics
  • translocation factor
  1. استوار، پ. خاوازی، ک. ملکوتی، م ج. 1391. نقش باکتری­های مفید خاکزی در افزایش کارایی پالایش سبز یک خاک آلوده به کادمیوم. 1 / مجله پژوهش­های خاک (علوم خاک و آب). جلد 26، شماره 2، صفحه 175-183.
  2. آذرمی، ف. مظفری، و. عباس­زاده دهجی، پ. حمیدپور، م. 1394. جداسازی باکتری­های سودوموناس فلورسنس از ریزوسفر درختان پسته و تعیین برخی خصوصیات محرک رشدی آن­ها. نشریه زیست شناسی خاک. جلد2. شماره2. ص 14-1.
  3. پازکی، ع. 1391. بررسی اثر سرب، آزوسپریلیوم و هیومیک اسید بر محتوی کلروفیل، وزن ریشه و اندام هوایی گیاه کلزا. مجله پژوهش­های به­زراعی. جلد 4، شماره 2، صفحه 173-184.
  4. حمیدی، آ. اصغرزاده، ا. چوکان، ر. دهقان شعار، م. قلاوند، ا. و ملکوتی، م. ج. 1389 . تأثیر کاربرد باکتری­های افزاینده رشد (PGPR)  بر تسهیم ماده خشک و برخی ویژگی­های رشد گیاه ذرت در شرایط گلخانه. مجله پژوهش­های علوم خاک و آب..67-55 :(1) 24
  5. رسولی­صدقیانی، ح.  خاوازی، ک . رحیمیان، ح . ملکوتی، م . ج.  و اسدی­رحمانی، ه .1384 . بررسی تراکم جمعیت وشناسایی سودوموناس­های فلورسنتدر ریزوسفر گندم مناطق مختلف ایران . مجله علوم خاک و آب . جلد26، 195-206.
  6. رضوانی مقدم، پ. بخشایی، س. غفوری، ا. جعفری، ل. 1393. بررسی اثر مدیریت مختلف کودی بر تولید گیاه دارویی مرزه (Saturea hortensis) در شرایط مشهد، نشریه پژوهش­های زراعی ایران. سال چهارم. دوره دوازدهم. شماره اول. ص 33-27.
  7. رفعتی، م. خراسانی، ن. مراقبی، ف. شیروانی، ا. 1390. توانایی گونه­ها­ی توت سفید (Morus alba) و سپیدار (Populus alba) در تثبیت و برداشت فلزات سنگین. مجله منابع طبیعی ایران، دوره 65، شماره 2، ص 181-191.
  8. سلطانی طولارود، ع . صالح راستین، خاوازی، ک.  اسدی رحمانی، ه و عباس­زاده دهجی، پ . 1386 .جداسازی و بررسی صفات محرک رشد گیاهی برخی از سودوموناس­هایفلورسنتبومی خاک­های ایران . مجله علوم خاک و آب، جلد 21، 277-289. 
  9. عیسی زاده لزرجان، س. اسدی کپورچال، ص، همایی، م. پالایش گیاهی و تخمین زمان بهینه پالایش خاک­های آلوده به کادمیم با استفاده از گیاه اسفناج .(Spinacia oleracea L.) نشریه بوم شناسی کشاورزی. جلد 6، شماره 4، زمستان 1393 ، صفحه 926-916.
  10. کاظم­علیلو، س . رسولی­صدقیانی، م. ح. 1391. اثر آلودگی کادمیومی خاک بر برخی شاخص­های فیزیولوژیک گیاه بنگدانه در حضور و عدم حضور ریزجانداران محرک رشد گیاه. نشریه دانش آب و خاک. جلد 22، شماره 4، صفحه 17-30.
  11. کریمی، ن. خان احمدی، م. مرادی، ب. 1392. اثر غلظت­های مختلف سرب بر برخی پارامترهای فیزیولوژیکی گیاه کنگرفرنگی. مجله پژوهش­های تولید گیاهی. سال پنجم. دوره بیستم. شماره اول، صفحه 62- 49.
  12. لادن، ش.  1388. بررسی زیست­پالایی خاک­های آلوده به آرسنیک توسط پیازچه و کلم زینتی. پایان­نامه دوره ارشد خاکشناسی. دانشکده کشاورزی، دانشگاه تربیت مدرس. تهران، ایران.
  13. مرادی، ر. 1388. تأثیر کود­های بیولوژیک و آلی بر عملکرد، اجزای عملکرد دانه و میزان اسانس گیاه رازیانه (Foeniclum vulgar). پایان­نامه کارشناسی ارشد اگرولوژی. دانشگاه فردوسی مشهد. مشهد.
  14. نعمتی، ا. گلچین، ا. بشارتی، ح. 1394. بررسی اثرات کودهای زیستی بر عملکرد و اجزای عملکرد گیاه گوجه­فرنگی در یک خاک آلوده به کادمیوم. نشریه پژوهش­های خاک. جلد 29، شماره 1، صفحه 23-36.
  15. .Kapulink, Y., Sarig, S., Nur, A., Okon, Y. and Henis, Y. 1982. The effect of Azospirillum inoculation on growth and yield of corn. Israel journal of botany. 31: 247- 255.
  16. Abbas-Zadeh,  P.,  Saleh-Rastin, N.,  Asadi-Rahmani, H., Khavazi, K., Soltani, A., Shoary- Nejati, R. and Miransari. M. 2010. Plant growth-promoting activities of fluorescent pseudomonads, isolated from the Iranian soils. Acta Physiologiae Plantrum. 32:281 -288.
  17. Ahmad, F., Ahmad, I., and Sahir khan, M. 2005. Indoleacetic acid production by indigenous isolates of azotobacter and fluorescent pseudomonas in the presence and absence of tryptophan. Turk. J. Biology and Fertility of Soils. 29: 29-34.
  18. Alexander, D. B. and Zuberer,  D. A. 1991.  Use of cgrome azural S reagents to evaluate sidrophore production by rhizosphere bacteria. Biology and Fertility of Soils. 12: 39-45.
  19. Anderson, C. R., and Cook, G. M. 2004. Isolation and characterization of arsenate-reducing bacteria from arsenic-contaminated sites in New Zealand. current microbiology. 48(5): 341- 347.
  20. Aparajita, M., Sagarmoy G., Niharendu S., S. C. kole and suparadip S. 2013. Arsenic accumulating bacteria isolated from tannery effluent. Bioresource Tech. 78: 31-35.
  21. Baroni, F., Boscagli, A., Protano, G., and  Riccobono, F. 2000. Antimony accumulation in Achillea ageratum, Plantago lanceolata and Silene vulgaris growing in an old Sb-mining area. Environmental Pollution, 109: 347- 352.
  22. Belimov, A.A.,  Safronova, V.I., Sergeyeva, T.A., Egorova, T.N., Matveyeva, V.A., Tsyganov, V.E., Borisov, A.Y., Tikhonovich, I.A.,  Kluge,  C.,  Preisfeld,  A.,  Dietz,K.J., and Stepanok, V.V. 2001. Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing1-aminocyclopropane-1-carboxylate deaminase. Canadian journal of Microbiology. 47: 642-652.Belimov, A.A., Hontzeas, N., Safronova, V.I., Demchinskaya, S.V., Piluzza, G., Bullitta, S., and Glick, B.R., 2005. Cadmium- tolerant plant growth- promoting bacteria associated with the roots of India mustard (Brassica juncea L. Czer.). Soil Biology. Biochem. 37(2): 241-250.
  23. Bent, E., Tvzun, S., Chanway, C.P., and Enebak, S. 2001. Alterations in plant growth and root hormone levels of pole pines inoculated with rhizobacteria. Canadian journal of Microbiology. 47: 793-800.
  24. Bremner,J. M., and Mulvaney. C. S. 1982. Nitrogen total. P595-624. In: Page, A.L., Miller, R.H., and Keeney, D.R (eds), Methods of Soil Analysis. Part 2, 2nd ed. ASA and SSSSA. Madison, WI.
  25. Burd, G. I., Dixon,  D. G.  and Glick, B. R. 2000. Plant growth promoting bacteria that decrease heavy metal toxicity in plants. Canadian journal of Microbiology. 46:237-245.
  26. Chang, J.S, and kim, I. S. 2010. Arsenit oxidation by Bacillus sp.  strain Sea H-As22w isolated from coastal seawater in yeosu Bay.  Environ, Eng, Res. 15: 15-21.
  27. Chen, B.D., Zhu, Y.G., and Smith F.A. 2006. Effects of arbuscular mycorrhizal inoculation on uranium and arsenic accumulation by Chinese brake fern (Pteris vittata L.) from a uranium mining-impacted soil. Chemosphere, 62: 1464-1473.
  28. Dell’Amico, E., Cavalca, L., and Andreoni, V. 2008. Improvement of Brassica napus growth under cadmium stress by cadmium-resistant rhizobacteria. Journal of Soil Biology. and Biochemistry 40:74-84.
  29. Dileepkumar, B.S.,  and  Dube,  H. C. 1992. Seed bacterization with fluorescent pseudomonads for enhanced plant growth, yield and disease control. Soil Biology. Biochem. 24: 539-542.
  30. Dobbelaere, S., Croonenborghs, A., Thys, A., Ptacek, D., Vanderleyden, J., Dutto, P., Labandera-Gonzalez, C., J. Caballero-Mellado, J.F. Aguirre, Y. Kapulnik, S. Brener, S. Burdman, D. Kadouri, S. and Sarigand Y. Okon. 2001. Responses ofagronomically important crops to inoculation with Azospirillum. J. Genetic and Breeding. 40:51-60.
  31. Dominguez, M. T., Maranon, T., Murilli, J. M., and Sc hulin, R. 2007. Trace elements accumulation in woo dy plants of the Guadiamar valley, SW Spain: a large – scale phytomanagement case study. Environmental. Pollution . 152: 50-59.
  32. Gee, GW., and Orr, D., 2002. Partical- size analysis. Soil Science Society of America. Madison. 16:255-293.
  33. Glick,  B. R.,  D. M.  Penrose and J., Li. 1998. A model for the lowering of plant ethylene concentrations by plant growthpromoting bacteria. J. Theor. Biol. 190:3-68.
  34. Glick, B. R. 2014. Bacteria with ACC deaminase can promote plant growth and help tofeed the world. Microbiological Research 169: 30- 39.
  35. Glick, B.R. 1995. The enhancement of plant growth by- free- living bacteria. Canadian
  36. Journal of Microbiology. 41: 109-117.
  37. Haque, N., J. R. Peralta-Videa, G. L. Jones, T. E. Gill., and Gardea-Torresdey, J. L. 2008. Screening the phytoremediation potential of desert broom (Baccharis sarothroides Gray) growing on mine tailing in Arizona, USA. Environmental Pollution. 153: 362-368.
  38. Hasnain. S. and Sabri. AN. 1996. Growth Stimulation of Triticum aestivum seedling under Cr- stresses by non rhizospheric pseudomonad strains. P. 36. Abstracts of the 7th International Symposium on biological Nitrogen Fixation with Non- Legumes. Kluwer Academic Publishers, the Netherlands.
  39. Jog, R., Pandya M., Nareshkumar, G. and Rajkumar, S. 2014. Mechanism of phosphate solubilization and antifungal activity of Streptomyces spp. Isolated from wheat roots and rhizosphere and their application in improving plant growth. Microbiology. 160: 778–788.
  40. Jones, J.  and Benton. 2001. Laboratory guide for conducting soil tests and plant analysis. CRS Press. 308 p.
  41. Kuffner, M., Puschenreiter, M., Wieshammer, G., Gorfer, M. and Sessitsch, A. 2008. Rhizospher bacteria affect growth and metal uptake of heavy metal accumulating willows, plant Soils., 304:35-44.
  42. Leoni L, Ambrosi C, Petrucca A and Visca P, 2002. Transcriptional regulation of Pseudobactin synthesis in the plant
  43. Lin, G. , Fanyu, K., Chao, F., Jing W.and  Jiaming, G. 2016. Isolation, Characterization, and Growth Promotion of Phosphate-Solubilizing Bacteria Associated with Nicotiana Tabacum (Tobacco). Polish Journal of Environmental Studied 25: 993-1003
  44. Lin, W., Xiao, T., Wu, Y., Ao, Z. and Ning, Z. 2012. Hyperaccumulation of zinc by Corddalis davidii in Zn-polluted soils. Chemosphere 86: 837-842.
  45. Ma, Y., Prasad, MNV., Rajkumar, M., and Freitas, H. 2011. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnology Advances. 29: 248–258.
  46. Mahfouz, S.,  and Sharaf-Eldin, M. 2007. Effect of mineral vs. biofertilizer in growth, yield, and essential oil content of fennel (Feoniculum vulgare). International agrophysics. 21: 361- 366.
  47. Marchiol, L., Assolari, S., Sacco, P. and Zerbi, G. 2004.  Phytoextraction of heavy metals by canola(Brassica napus) and radish (Raphanus sativus) grown on multicotaminated soil. Environ. Pollut. 132: 21-27.
  48. Mudgal, V., Madaan, N., and Mudgal, A. 2010. Heavy metals in plants: phytoremediation: Plants used to remediate heavy metal pollution. Agriculture and biology journal of nourth America.1(1): 40-46.
  49. Naees, M., Qurban, A., Shahbaz, M., and Fawad, A. 2011. Role of rhizobacteria in phytoremediation of heavy metals: An overview. International Research. J. Plant Science. 2: 8.220-232.
  50. Nagarajkumar, M., Bhaskaran, R. and Velazhahan, R. 2004. Involvement of secondary metaboloties and extracellular lytic inhibition of Rhizoctonia solani, the rice, sheath blight pathogen. Microbiology Research enzymes produced by Pseudomonas fluorescens in159: 73-81.
  51. Noori, M.S. Sh. and Saud, H.M. 2012. Potential Plant Growth- Promoting Activity of Pseudomonas sp. Isolated from Paddy Soil in Malaysia as Biocontrol Agent. Plant Pathology and Microbiology. 3:1-4.
  52. O’Sullivan, D. J. and O’Gara, F. 1992. Traits of Pseudomonas fluorescens spp. Involved in suppression of plant root pathogens. Microbiological Reviews. 56: 662-676.
  53. Ogoko, E. C. 2015. Accumulation of Heavy Metal in Soil and Their Transfer to Leafy Vegetables with Phytoremediation Potential. American Journal of Chemistry. 5(5): 125-131.
  54. Patten, CL., and Glick BR . 2002. Role of Pseudomonas putidaandindole acetic acid in development of the host plant root system. Appl. Environment. Microbiol. 68: 3795-3801.
  55. Rahmanian, M., Khodaverdiloo, H., Rezaei Danesh, Y., and Rasouli Sadaghiani, M. 2001. Effects of heavy matal resistant soil microbs inoculation and soil Cd concentration on growth and metal uptake of millet, couch grass and alfalfa. J. Microbiology Research. 5: 4. 403-410.
  56. Rajkumar, M., Ae, N., Prasad, M. N. V., and Freitas, H., 2010. Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol. 28, 142-149.
  57. Richards Bk and Steenhuis TS, 1998. Metal mobility at an old heavy metal loaded sluge application site. Environ poll 99:365-377.
  58. Saravanan, V. S., Subramoniam, S. R. and Raj, S. A. 2003. Assessing in vitro solubilization potential of different zinc solubilizing bacterial (zsb) isolates. Brazilian Journal of Microbiology 34: 121-125.
  59. Schippers, B., Bakker, A.W. and Bakker, A. H. M. 1987. Intractions of deleterious and and beneficial rhizosphere microorganisms and the effect of cropping practices. Annual Review of Phytopathology 25: 339-59.
  60. Shahab, S. and Ahmed, N. 2008. Effect of various parameters on the efficiency of zinc phosphate solubilization by indigenous bacterial isolates. African Journal of Biotechnology. 7: 1543-1549.
  61. Sharma, P., and Dubey, R. 2005. Lead toxicity in plants. Plant physiology. 17: 35- 52.
  62. Sharma, S., Kaul, A., Metwally, K. Goyal, I., Finkemeier, K., and Dietz, J. 2004. Cadmium toxicity in barley (Hordeum vulgar) as affected by varying Fe nutritional status. Plant science. 166: 1287- 1295.
  63. Smith, S. E. and Read, D.J.1997. mycorrhizal symbiosis. 2 nded. Academic press, London. Soil Environ. 30: 1. 18-26.
  64. Spaepen, S., Vanderleyden, J. and Roseline, R. 2007. Indole-3-acetic acid in microbial and microorganism-plant Signaling. FEMS Microbiol Rev. 1-24.
  65. Sperber, J. I. 1958. the incidence of apatite soulbilizing organisms in the rhizospher. Aust. J. Agr. Res. 9: 778-781.
  66. Vassilev, A., Vangronsveld, J. and Yordanov, I. 2002. Cadmium phytoextraction: Present state, Biological Backgrounds and Research Needs. BULG. J. plant physiol, 28(3-4): 68-95.
  67. Vessey, J.K. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil. 255: 571-586.
  68. Vitoria, A.P., Dacunha, M., and Azevedo, R.A. 2005. Ultra structural changes of radish leaf exposed to cadmium. Environmental and Experimental Botany, 58: 47-52.
  69. Vivas A., Vo¨ro¨s I., Biro´ B., Barea J.M., Ruiz-Lozano J.M., and Azco´n R. 2003. Beneficial effects of indigenous Cd-tolerant and Cdsensitive Glomus mosseae associated with a Cd-adapted strain of Brevibacillus brevis in improving plant tolerance to Cd contamination. Applied Soil Ecology. 24:177–186.
  70. Walkly, A., I.  and A., Black. 1934. An examination of Degtijaref method for determining soil organic matter and a proposed modification of the chromic acid in soil analysis. I. Experimental. Soil Science Society of America Journal. 79: 459- 465.
  71. Wenzel WW, Kirchbaumer N and Prohaska T, 2001. Arsenic fractionation in soils using an improved sequential extraction procedure. Analytical Chimica Acta 436: 309-323.
  72. Wu, S. C. Cheung, K. C. Luo, Y. M. and Wonge, M.H. 2006. Effects of inoculation of plant growth- promoting rhizobacteria on metal uptake by Brassica juncea. Environmental Pollution. 140(1):124-135.
  73. Wu, S. C., Cheung, K. C., Luo, Y. M., and Wong, M. H. 2006. Effects of inoculation of plant growth-promoting rhizobacteria on metal uptake by Brassica juncea. Journal of En viromental pollution. 140: 124-135.
  74. Yan-de, J., Zhen-li, H., and Xiao, Y. 2007. Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. Journal of zhejiang univercity science. 8(3): 197- 207.
  75. Zahir, A. Z., H. N. Asghar, M. J. Akhtar, and M. Arshad. 2005. Precursor( L-tryptophan)-Inoculum(Azotobacter) Interaction for Improving Yield and nitrogen uptake of maize. Journal of plant nutrition, vol. 28, no. 5, 805-817.
  76. Zhou, Q.X., and Song, Y.F. 2004. Principles and Method of Treating Contaminated Soil Remediation, Science Press, Beijing, 489 pp.
  77. Zhuang, X., Chen, J., Shim, H., and Bai, Z. 2007. New advances in plant growth-promoting rhizobacteria for bioremediation. Environment International. 33, 406-413.