بررسی بیان ژن‌های دخیل در سازش به کمبود فسفر در گره‌های دو سویه از باکتری همزیست نخود

نوع مقاله : مقاله پژوهشی

نویسنده

استادیار گروه زیست‌شناسی دانشگاه لرستان

چکیده

تولید محصول در لگوم­های مهم مانند نخود اغلب توسط کمبود فسفر خاک کاهش پیدا می­کند. این کاهش به بازداشته شدن فعالیت گره و نتیجتاً کاهش تثبیت نیتروژن در شرایط کمبود فسفر نسبت داده می­شود. بنابراین شناسایی مکانیسم­های مولکولی مسئول بهبود عملکرد همزیستی تحت­شرایط کمبود فسفر در رابطه همزیستی نخود-مزوریزوبیوم می­تواند برای بالا بردن پتانسیل تولید محصول این لگوم از طریق روش­های مهندسی ژنتیک و اصلاح نباتات استفاده شود. در این مطالعه، میزان تغییرات در بیان برخی ژن­ها تحت شرایط کمبود فسفر در مقایسه با شرایط فسفر کافی (شاهد) در دو رابطه همزیستی (نخود-M. mediterraneum SWRI9 و نخود- M. ciceri CP-31) توسط روش Real-time PCR بررسی شد. نتایج مربوط به پارامترهای رشد و محتوی فسفات معدنی در گره و ریشه نشان داد که رابطه همزیستی نخود- M. mediterraneum SWRI9 نسبت به کمبود فسفر حساس و نخود- M. ciceri CP-31 نسبت به کمبود فسفر مقاوم است. در شرایط کمبود فسفر، میزان بیان ژن­هایInorganic phosphate transporter 1-4like ، Inorganic phosphatase 2-like و Malate dehydrogenase در گره­های نخود- M. ciceri CP-31افزایش معنی­داری را در مقایسه با میزان بیان این ژن­ها در گره­های تحت شرایط فسفر کافی نشان داد. بیان ژن Phosphate transporter 1 در گره­های هر دو رابطه همزیستی تحت تنش کمبود فسفر کاهش پیدا کرد. به علاوه، سطح بیان ژنHistidine kinase  در گره­های نخود-M. mediterraneum SWRI9 افزایش قابل ملاحظه­ای را در پاسخ به کمبود فسفر نشان داد. پاسخ متفاوت عملکرد همزیستی به شرایط کمبود فسفر در دو رابطه همزیستی با اختلاف در سطح بیان ژن­های مورد بررسی مرتبط می­باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Expression of genes involved in adaptation to low phosphorus in nodules of two symbiotic associations of chickpea-Mesorhizobium

نویسنده [English]

  • M. Nasr Esfahani
چکیده [English]

Crop production of important legumes such as chickpea is often limited by low phosphorus (P) in soils. This limitation that is mainly attributed to inhibition of nodule activity and consequently decline in nitrogen fixation under P deficiency. Therefore, the precise identification of molecular mechanisms responsible for improvement of symbiotic effectiveness of symbiotic associations of legume-rhizobium can be used to enhance productivity through genetic engineering and breeding methods. In this study, changes in expression level of some genes in nodules of two symbiotic associations (chickpea-M. mediterraneum SWRI9 and chickpea-M. ciceri CP-31) under P starvation were investigated by Real-time PCR. Based on the results obtained from thegrowth parameters and Pi content in nodules and roots, the two examinedstrains of rhizobia differ markedly in tolerance to phosphorus deficiency.chickpea-M. mediterraneum SWRI9 was  a P deficiency sensitive symbiotic associations and chickpea-M. ciceri CP-31 was much more tolerant one to P deficiency. Under P deficiency, the expression level of inorganic phosphate transporter 1-4like, inorganic phosphatase 2-like and malate dehydrogenase genes in nodules chickpea-M. ciceri CP-31 increased as compared their expression under P-sufficient conditions. In both symbiotic associations, the expression level of Phosphate transporter 1 in nodules decreased under P deficiency. In addition, the expression level of histidin kinase genes increased in nodules of chickpea-M. mediterraneum SWRI9 in response to P deficiency. Different response of symbiotic effectiveness to P deficiency in two symbiotic associations is related to difference in expression level of studied genes.

کلیدواژه‌ها [English]

  • Mesorhizobiumciceri
  • Mesorhizobiummediterraneum
  • inorganic phosphate
  • expression gene
  • real time PCR
  1.  نصراصفهانی، م. 1392. بررسی تغییرات الگوی بیان پروتئین­ها و ایزوزیم­های سوپراکسیددیسموتاز گرهک تحت شرایط تنش خشکی در همزیستی بین نخود با سه سویه Mesorhizobium ciceri. زیست شناسی خاک. شماره 2، جلد 1: 82-71
  2. Bargaz, A. Ghoulam, C. Drevon, J.J. 2013. Specific expression and activity of acid phosphatases in common bean nodules. Plant Signaling and Behavior 8(8): 1-8.
  3. Bargaz, A. Ghoulam, C. Faghire, M. Aslan-Attar, H. Drevon, J.J. 2011. The nodule conductance to O2 diffusion increases with high phosphorus content in the Phaseolus vulgaris-rhizobia symbiosis. Symbiosis 53: 157-164.
  4. Cabeza, R.A. Liese, R. Lingner, A. Von Stieglitz, I. Neumann, J. Salinas-Riester, G. Pommerenke, C. Dittert, K. and Schulze, J. 2014. RNA-seq transcriptome profiling reveals that Medicago truncatula nodules acclimate N2 fixation before emerging P deficiency reaches the nodules. Journal of Experimental Botany 65: 6035-6048.
  5. Chen, Z. Cui, Q. Liang, C. Sun, L. Tian, J. and Liao, H. 2011. Identification of differentially expressed proteins in soybean nodules under phosphorus deficiency through proteomic analysis. Proteomics 11: 4648-4659.
  6. Ciereszko, I. Szczygła, A. Żebrowska, E. 2011. Phosphate deficiency affects acid phosphatase activity and growth of two wheat varieties. Journal of Plant Nutrition 34: 815-829.
  7. Dick, C.F. Dos-Santos, A.L.A. Meyer-Fernandes, J.R. 2011. Inorganic phosphate as an important regulator of phosphatases. Enzyme Research 2011: 1-7.
  8. Dionisio, G. Madsen, C.K. Holm, P.B. Welinder, K.G. Jørgensen, M. Stoger, E. Arcalis, E. and Brinch-Pedersen, H. 2011. Cloning and Characterization of Purple Acid Phosphatase Phytases from Wheat (Triticum aestivum L.), Barley (Hordeum vulgare L.), Maize (Zea maize L.) and Rice (Oryza sativa L.). Plant Physiology 156(3): 1087-1100.
  9. Fang, Z. Shao, C. Meng, Y. Wu, P. Chen, M. Phosphate signaling in Arabidopsis and Oryza sativa. 2009 Plant Science 176:170-180.
  10. Franco-Zorrilla, J.M. Martín, A.C. Leyva, A. Paz-Ares, J. 2005. Interaction between Phosphate-Starvation, Sugar, and Cytokinin Signaling in Arabidopsis and the Roles of Cytokinin Receptors CRE1/AHK4 and AHK3. Plant Physiology 138: 847-857.
  11. Franco-Zorrilla, J.M. Martin, A.C. Solano, R. Rubio, V. Leyva, A. and Paz-Ares, J. 2002. Mutations at CRE1 impair cytokinin‐induced repression of phosphate starvation responses in Arabidopsis. The Plant Journal 32: 353-360.
  12. Gaude, N. Nakamura, Y. Scheible, W.R. Ohta, H. and Dörmann, P. 2008. Phospholipase C5 (NPC5) is involved in galactolipid accumulation during phosphate limitation in leaves of Arabidopsis. The Plant Journal 56: 28-39.
  13. Ha, C.V. Nasr Esfahani, M. Watanaba, Y. Tran, U. T. Sulieman, S. Mochida K. Nguyen D.V. and Tran, L.S.P. 2014. Genome-Wide Identification and Expression Analysis of the CaNAC Family Members in Chickpea during Development,Dehydration and ABA Treatments. PLOS ONE 5: 1-22
  14. Kleinert, A. Venter, M. Kossmann, J. Valentine, A. 2014. The reallocation of carbon in P deficient lupins affects biological nitrogen fixation. Journal of Plant Physiology 171: 1619-1624.
  15. Kusano, M. Fukushima, A.  Kobayashi, M. Hayashi, N. Jonsson, P. Moritz, T. Ebana, K. and Saito, K. 2007. Application of a metabolomic method combining one-dimensional and two-dimensional gas chromatography-time-of-flight/mass spectrometry to metabolic phenotyping of natural variants in rice. Journal of Chromatography B 855: 71-79.
  16. Larrainzar, E. Gil-Quintana, E. Seminario, A. Arrese-Igor, C. and González, E.M. 2014. Nodule carbohydrate catabolism is enhanced in the Medicago truncatula A17-Sinorhizobium medicae WSM419 symbiosis. Frontiers in Microbiology 5: 447.
  17. Le, D.T. Nishiyama, R. Watanabe, Y. Tanaka, M. Seki, M. Ham, L.H. Yamaguchi-Shinozaki, K. Shinozaki, K. and Tran, L.S.P. 2012. Differential gene expression in soybean leaf tissues at late developmental stages under drought stress revealed by genome-wide transcriptome analysis. PLOS ONE 7(11): 1-10.
  18. Liang, C. Tian, J. Lam, H.M. Lim, B.L. Yan, X. and Liao, H. 2010. Biochemical and Molecular Characterization of PvPAP3, a Novel Purple Acid Phosphatase Isolated from Common Bean Enhancing Extracellular ATP Utilization. Plant Physiology 152: 854-865.
  19. López-Arredondo, D.L. Leyva-González, M.A. González-Morales, S.I. López-Bucio, J. Herrera-Estrella, L. 2014. Phosphate nutrition: improving low-phosphate tolerance in crops. Annual Review of Plant Biology 65: 95-123.
  20. Nagarajan, V.K. Jain, A. Poling, M.D. Lewis, A.J. Raghothama, K.G. and Smith, A.P. 2011. Arabidopsis Pht1;5 mobilizes phosphate between source and sink organs, and influences the interaction between phosphate homeostasis and ethylene signaling. Plant Physiology 156(3): 1149-1163.
  21. Nasr Esfahani, M. Sulieman, S. Schulze, J. Yamaguchi-Shinozaki, K. Shinozaki, K. and Tran, L.S.P. 2014. Approaches for enhancement of N2 fixation efficiency of chickpea (Cicer arietinum L.) under limiting nitrogen conditions. Plant Biotechnology Journal 12: 387-397.
  22. Olivera, M. Tejera, N. Iribarne, C. Ocaña, A. and Lluch, C. 2004. Growth, nitrogen fixation and ammonium assimilation in common bean (Phaseolus vulgaris): effect of phosphorus. Physiologia Plantarum 121: 498-505.
  23. Qin, L.  Zhao, J. Tian, J. Chen, L. Sun, Z. Guo, Y. Lu, X. Gu, M. Xu, G. and Liao, H. 2012. The high-affinity phosphate transporter GmPT5 regulates phosphate transport to nodules and nodulation in soybean. Plant Physiology159: 1634-1643.
  24. Ramírez, M. Flores-Pacheco, G. Reyes, J.L. Álvarez, A.L. Drevon, J.J. Girard, L. and Hernández, G. 2013. Two common bean genotypes with contrasting response to phosphorus deficiency show variations in the microRNA 399-Mediated PvPHO2 regulation within the PvPHR1 signaling pathway. International Journal of Molecular Sciences 14: 8328-8344.
  25. Remy, E. Cabrito, T.R. Batista, R.A. Teixeira, M.C. Sá-Correia, I. and Duque, P. 2012. The Pht1;9 and Pht1;8 transporters mediate inorganic phosphate acquisition by the Arabidopsis thaliana root during phosphorus starvation. New Phytologist 195: 356-371.
  26. Schulze, J. Temple, G. Temple, S.J. Beschow, H. and Vance, C.P. 2006. Nitrogen fixation by white lupin under phosphorus deficiency. Annals of Botany 98: 731-740.
  27. Sulieman, S, Tran, L.S.P. 2015. Phosphorus homeostasis in legume nodules as an adaptive strategy to phosphorus deficiency. Plant Science 239: 36-43.
  28. Sulieman, S. Ha, C.V. Schulze, J. Tran, L.S.P. 2013, Growth and nodulation of symbiotic Medicago truncatula at different levels of phosphorus availability. Journal of Experimental Botany 64: 2701-2712.
  29. Sun, S. Gu, M. Cao, Y. Huang, X. Zhang, X. Ai, P. Zhao, J. Fan, X. and Xu, G. 2012. A Constitutive Expressed Phosphate Transporter, OsPht1;1, Modulates Phosphate Uptake and Translocation in Phosphate-Replete Rice. Plant Physiology 159: 1571-1581.
  30. Uhde-Stone, C. Gilbert, G. Johnson, J.F. Litjens, R. Zinn, K. Temple, S. Vance, C. and Allan, D. 2003. Acclimation of white lupin to phosphorus deficiency involves enhanced expression of genes related to organic acid metabolism. Plant Soil 248: 99-116.
  31. Valdés-López, O. and Hernández, G. 2008.Transcriptional regulation and signaling in phosphorus starvation: what about legumes? Journal of Integrative Plant Biology 50: 1213-1222.
  32. Valentine, A.J. Benedito, V.A. Kang, Y. 2011. Legume nitrogen fixation and soil abiotic stress: from physiology to genomics and beyond. Annual Plant Reviews 42:  207-248
  33. Vance, C.P. Uhde-Stone, C. Allan, D.L. 2003. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytologist 157, 423-447.
  34. Wang,  X. Wang, Y. Tian, J. Lim, B.L. Yan, X. and Liao, H. 2009. Overexpressing AtPAP15 Enhances phosphorus efficiency in soybean. Plant Physiology151, 233-240.
  35. Zhang, D. Song, H. Cheng, H. Hao, D. Wang, H. Kan, G. Jin, H. and Yu, D. 2014. The Acid Phosphatase-Encoding Gene GmACP1 Contributes to Soybean Tolerance to Low-Phosphorus Stress. PLOS Gen 10 (1): 1-16.
  36. Zhang, W. Gruszewski, H.A. Chevone, B.I. Nessler, C.L. 2008. An Arabidopsis purple acid phosphatase with phytase activity increases foliar ascorbate. Plant Physiology 146: 431-440