بررسی اثر کاربرد کرم خاکی Eisenia fetida و قارچ میکوریزا آربوسکولار Funneliformis mosseae بر برخی از خصوصیات میکروبی خاک و جذب نیتروژن و فسفر توسط ذرت Zea mays

نویسندگان

1 دانشجوی کارشناسی ارشد گروه علوم خاک دانشکده کشاورزی دانشگاه فردوسی مشهد

2 استادیار گروه علوم خاک دانشکده کشاورزی دانشگاه فردوسی مشهد

3 استاد گروه علوم خاک دانشکده کشاورزی دانشگاه فردوسی مشهد

4 دانشیار گروه علوم خاک دانشکده کشاورزی دانشگاه فردوسی مشهد

چکیده

فعالیت کرم‌های خاکی و قارچ‌های میکوریزی در خاک، بر جذب آب و عناصر غذایی و عملکرد گیاه تأثیرگذار است. لذا، به‌منظور بررسی تأثیر کرم خاکی (Eisenia fetida) و قارچ میکوریزا (Funneliformis mossea) بر کلونیزاسیون ریشه، وزن خشک اندام هوایی، جذب عناصر فسفر و نیتروژن، کربن آلی و کربن زیست‌توده میکروبی خاک، آزمایشی گلخانه‌ای در ایستگاه تحقیقاتی دانشکده کشاورزی دانشگاه فردوسی مشهد در قالب طرح کاملاً تصادفی با سه تکرار مورد بررسی قرار گرفت. تیمارهای این آزمایش شامل شاهد (C)، کاربرد کرم خاکی(Ew)، کاربرد میکوریزا (AMF) و کاربرد تلفیقی کرم خاکی به‌همراه میکوریزا(AMF×Ew) بودند. نتایج نشان داد که کاربرد میکوریزا (تیمارهای میکوریزا و کرم خاکی به همراه میکوریزا) موجب تفاوت معنی‌دار در درصد کلونیزه‌شدن ریشه نسبت به تیمار شاهد شد. تیمار تلفیقی کرم خاکی به‌همراه میکوریزا به ترتیب باعث افزایش 105 و 79 درصدی غلظت فسفر و نیتروژن در اندام هوایی گیاه ذرت نسبت به تیمار شاهد شدند. تأثیر میکوریزا بر افزایش جذب فسفر و درنتیجه کاهش نسبت N/P و تأثیر کرم خاکی بر افزایش جذب نیتروژن از دو منبع معدنی و آلی و در نتیجه افزایش نسبت N/P در گیاه معنی‌دار بود. تیمارهای آزمایش به طور معنی‌داری موجب افزایش کربن زیست‌توده میکروبی خاک شدند. علاوه بر این کربن آلی خاک در حضور کرم‌های خاکی به طور معنی‌داری افزایش یافت. از این رو، در راستای کشاورزی پایداراستفاده از کرم‌های خاکی و قارچ میکوریزا آربوسکولار به‌عنوان کود زیستی می‌تواند موجب کاهش مصرف کودهای شیمیایی فسفری و نیتروژنی و افزایش راندمان مصرف این کودها شود.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of earthworm (Eisenia fetida) and arbuscular mycorrhiza fungi (Funneliformis mosseae) on soil microbial characteristics and Nitrogen and Phosphorus uptake by corn (Zea mays)

نویسندگان [English]

  • H. Dehghanian 1
  • A. Halajnia 2
  • A. Lakzian 3
  • A. R. Astaraei 4
1 M.Sc. Student, Department of Soil Science, Agricultural College, Ferdowsi University of Mashhad
2 Assistant Professor, Department of Soil Science, Agricultural College, Ferdowsi University of Mashhad
3 Professor, Department of Soil Science, Agricultural College, Ferdowsi University of Mashhad
4 Associate professor, Department of Soil Science, Agricultural College, Ferdowsi University of Mashhad
چکیده [English]

The activities of earthworms and mycorrhiza affect on water and nutrient uptake and crop yield. The aim of this study was to evaluate the effect of earthworm (Eisenia fetida) and arbuscular mycorrhiza fungi (AMF, Funneliformis mosseae) on root colonization, shoot dry weight, phosphorus and nitrogen uptake, organic carbon and soil microbial biomass C. In this regard, a greenhouse experiment was conducted in a completely randomized design (CRD) with three replications in Agricultural Research Station of Ferdowsi University of Mashhad. The experimental treatments consisted of control, single and integrated treatments of earthworm and mycorrhiza. The results showed that inoculated treatments with arbuscular mycorrhizal fungi significantly increased the amount of root colonization. The same trend was observed in combined treatments with mycorrhizal fungi and earthworm. The results also revealed that the integrated application of earthworm and mycorrhiza treatment increased the concentration of P and N in shoot by 105% and 79% ,respectively, compared to control treatment (p<0.05).The effect of mycorrhiza on decreasing N/P and also the effect of earthworm on increasing N/P were significant. The experimental treatments significantly increased the soil microbial biomass C (p<0.05). In addition, soil organic C significantly enhanced in the presence of earthworms. Hence, using earthworms and arbuscular mycorrhizal fungi as bio-fertilizer can reduce the consumption of nitrogen and phosphorus fertilizerand increase their use efficiency in the sustainable agriculture. 

کلیدواژه‌ها [English]

  • Biological fertilizer
  • N mineralization
  • Root colonization
  • Soil microbial biomass C
  • Soil organic C
  1. آقابابایی، ف.، رئیسی، ف.، حسین پور، ع. ر. 1392. اثر کرم خاکی و میکوریزا بر زیست توده میکروبی و فعالیت آنزیمی در     خاک­های آلوده به کادمیم در کشت آفتابگردان. نشریه آب و خاک (علوم و صنایع کشاورزی). جلد 27، شماره 5، 949 تا 962.
  2. صالــح راســتین، ن.1380. کودهای بیولوژیک و نقش آن در راســتای نیل به کشــاورزی پایدار. ضرورت تولید صنعتی کودهای بیولوژیک در کشــور. نشر آموزش کشاورزی، وزارت جهاد کشاورزی، کرج. ایران. 78-65.
  3. صالح راستین، ن. 1377. کودهای بیولوژیک. محله خاک و آب، جلد 12، شماره3 ، صفحات 36-1.
  4. ملکوتی، م.ج. 1374. بررسی وضعیت تعادل عناصر غذایی در خاک های ایران و جلوگیری از مصرف بیرویهکودهای شیمیایی. ماهنامه آب، خاک، ماشین. سال دوم. شماره10. صفحات 17-12..
  5. ملکوتی، م.ج.، طهرانی، م.م. 1384. نقش عناصر ریزمغذی در افزایش کّمی و کیفی محصـولات کشـاورزی و ارتقـای سـلامت جامعه «عناصر خرد با تأثیر کلان». موسسه تحقیقات خاک و آب (مشترک با دانشگاه تربیت مدرس تهران). 450 صفحه.
  6. Azcon, R., Aguilar, C. A. G., and Barea, J. M. 1978. Effects of plant hormones present in bacterial cultures on the formation and responses to VA endomycorrhiza. New Phytologist, 80 (2): 359-364.
  7. Bonkowski, M., Griffiths, B. S., and Ritz, K. 2000. Food preferences of earthworms for soil fungi. Pedobiologia, 44 (6): 666-676.
  8. Bradford, M. A., Jones, T. H., Bardgett, R. D., Black, H. I., Boag, B., Bonkowski, M., and Kandeler, E. 2002. Impacts of soil faunal community composition on model grassland ecosystems. Science, 298 (5593): 615-618.
  9. Bremner, J. M., and Mulvaney, C. S. 1982. Nitrogen—total. Methods of soil analysis. Part 2. Chemical and microbiological properties, (methodsofsoilan2), 595-624.
  10. Brown, G. G., Barois, I., and Lavelle, P. 2000. Regulation of soil organic matter dynamics and microbial activityin the drilosphere and the role of interactionswith other edaphic functional domains. European Journal of Soil Biology, 36 (3), 177-198.
  11. Brown, G. G., Edwards, C. A., and Brussaard, L. 2004. How earthworms affect plant growth: burrowing into the mechanisms. Earthworm ecology, 2, 13-49.
  12. Brussaard, L., Pulleman, M. M., Ouédraogo, É. Mando, A., and Six, J. 2007. Soil fauna and soil function in the fabric of the food web. Pedobiologia, 50 (6), 447-462.
  13. Chapman, H. D. 1965. Total exchangeable bases.Methods of soil analysis.Part 2.Chemical and microbiological properties, (methodsofsoilanb), 902-904.
  14. Edwards, C. A., and Bohlen, P. J. 1996. Biology and ecology of earthworms (Vol. 3). Springer Science and Business Media.
  15. Eisenhauer, N., König, S., Sabais, A. C., Renker, C., Buscot, F., and Scheu, S. 2009. Impacts of earthworms and arbuscular mycorrhizal fungi (Glomus intraradices) on plant performance are not interrelated. Soil Biology and Biochemistry, 41 (3), 561-567.
  16. Gee, G. W., Bauder, J. W., and Klute, A. 1986. Particle-size analysis. P. 383- 411. In Klute, A (ed.) Methods of soil analysis. Part 1. Physical and mineralogical methods. 2nd ed. American Society of Agronomy, Inc.
  17. Haynes, R. J., and Fraser, P. M. 1998. A comparison of aggregate stability and biological activity in earthworm casts and uningested soil as affected by amendment with wheat or lucerne straw. European Journal of Soil Science, 49 (4): 629-636.
  18. Horwath, W. R., and Paul, E. A. 1994. Microbial biomass. Methods of Soil Analysis: Part 2—Microbiological and Biochemical Properties, (methodsofsoilan2), 753-773.
  19. Hodge, A., Campbell, C.D. and Fitter, A.H. 2001. An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature, 413 (6853), pp.297-299.
  20. Johansson, J. F., Paul, L. R., and Finlay, R. D. 2004. Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS microbiology ecology, 48 (1), 1-13.
  21. Keeney, D. R. A., and Nelson, D. 1982. Nitrogen—inorganic forms. Methods of soil analysis. Part 2. Chemical and microbiological properties, (methodsofsoilan2), 643-698.
  22. Koerselman, W., and Meuleman, A. F. 1996. The vegetation N: P ratio: a new tool to detect the nature of nutrient limitation. Journal of applied Ecology, 1441-1450.
  23. Kormanik, P. P., Bryan, W. C., and Schultz, R. C. 1980. Procedures and equipment for staining large numbers of plant root samples for endomycorrhizal assay. Canadian Journal of Microbiology, 26 (4), 536-538.
  24. Ll, H., Li, X., Dou, Z., Zhang, J. and Wang, C. 2012. Earthworm (Aporrectodea trapezoides)–mycorrhiza (Glomus intraradices) interaction and nitrogen and phosphorus uptake by maize. Biology and Fertility of Soils, 48 (1), pp.75-85.
  25. Loeppert, R. H., and Suarez, D. L. 1996. Carbonate and Gypsum, Methods of Soil Analysis. Part 3. Chemical Methods. Soil Science Society of America, Madison.
  26. Lussenhop, J. 1996. Collembola as mediators of microbial symbiont effects upon soybean. Soil Biology and Biochemistry, 28 (3), 363-369. 
  27. McLean, M. A., Migge-Kleian, S., and Parkinson, D. 2006. Earthworm invasions of ecosystems devoid of earthworms: effects on soil microbes. Biological Invasions, 8 (6), 1257-1273.
  28. Milleret, R., Le Bayon, R. C., and Gobat, J. M. 2009. Root, mycorrhiza and earthworm interactions: their effects on soil structuring processes, plant and soil nutrient concentration and plant biomass. Plant and soil, 316 (1-2), 1-12.
  29. Olsen, S. R., Sommers, L. E., and Page, A. L. 1982. Methods of soil analysis. Part 2. Chemical and microbiological properties of Phosphorus. ASA Monograph, (9), 403-430.
  30. Ortas, I., Harris, P.J. and Rowell, D.L. 1996. Enhanced uptake of phosphorus by mycorrhizal sorghum plants as influenced by forms of nitrogen. Plant and soil, 184(2), 255-264.
  31. Ortiz-Ceballos, A. I., Peña-Cabriales, J. J., Fragoso, C., and Brown, G. G. 2007. Mycorrhizal colonization and nitrogen uptake by maize: combined effect of tropical earthworms and velvetbean mulch. Biology and Fertility of Soils, 44 (1), 181-186.
  32. Parkin, T. B., and Berry, E. C. 1999. Microbial nitrogen transformations in earthworm burrows. Soil Biology and Biochemistry, 31 (13), 1765-1771.
  33. Pattinson, G. S., Smith, S. E., and Doube, B. M. 1997. Earthworm Aporrectodea trapezoides had no effect on the dispersal of a vesicular-arbuscular mycorrhizal fungi, Glomus intraradicesSoil Biology and Biochemistry, 29 (7), 1079-1088.
  34. Scheu, S.1987. Microbial activity and nutrient dynamics in earthworm casts (Lumbricidae). Biology and fertility of soils, 5 (3), 230-234.    
  35. Sharma, A.K., 2002. Biofertilizers for sustainable agriculture (Vol. 12, 319-324). India.: Agrobios.
  36. Smith SE, Read DJ. 2008. Mycorrhizal symbiosis. Academic, San Diego Soils Laboratory Staff, Royal Tropical Institute (1984) Analytical methods of the service laboratory for soil, plant and water analysis. Part 1: methods for soil analysis. Royal Tropical Institute, Amsterdam.
  37. Tuffen, F., Eason, W. R., and Scullion, J. 2002. The effect of earthworms and arbuscular mycorrhizal fungi on growth of and 32 P transfer between Allium porrum plants. Soil Biology and Biochemistry, 34 (7), 1027-1036.
  38. Van Aarle, I. M., Söderström, B., and Olsson, P. A. 2003. Growth and interactions of arbuscular mycorrhizal fungi in soils from limestone and acid rock habitats. Soil Biology and Biochemistry, 35 (12), 1557-1564.
  39. Walkley, A., and Black, I. A. 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil science, 37 (1), 29-38.
  40. Wardle, D. A. 2006. The influence of biotic interactions on soil biodiversity. Ecology letters, 9 (7), 870-886.
  41. Wu, S. C., Cao, Z. H., Li, Z. G., Cheung, K. C., and Wong, M. H. 2005. Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma, 125 (1), 155-166.
  42. Wurst, S., Dugassa‐Gobena, D., Langel, R., Bonkowski, M., and Scheu, S. 2004. Combined effects of earthworms and vesicular–arbuscular mycorrhizas on plant and aphid performance. New Phytologist, 163 (1), 169-176.
  43. Yin, X. and Vyn, T.J. 2005. Relationships of isoflavone, oil, and protein in seed with yield of soybean. Agronomy Journal, 97 (5), pp.1314-1321.
  44. Zarea, M. J., Ghalavand, A., Goltapeh, E. M., Rejali, F., and Zamaniyan, M. 2009. Effects of mixed cropping, earthworms (Pheretima sp.), and arbuscular mycorrhizal fungi (Glomus mosseae) on plant yield, mycorrhizal colonization rate, soil microbial biomass, and nitrogenase activity of free-living rhizosphere bacteria. Pedobiologia, 52 (4), 223-235.
  45. Zhang J., Song C. and Wang S. 2007. Dynamics of soil organic carbon and its fractions after abandonment of cultivated wetlands in northeast China, Soil and Tillage Research, 96: 350–360.   
  46. Zhang, H., Wu, X., Li, G., and Qin, P. 2011. Interactions between arbuscular mycorrhizal fungi and phosphate-solubilizing fungus (Mortierella sp.) and their effects on Kostelelzkya virginica growth and enzyme activities of rhizosphere and bulk soils at different salinities. Biology and Fertility of Soils, 47 (5), 543-554.