بررسی اثر کاربرد کود شیمیایی و مواد آلی بر فعالیت آنزیم‌های فسفاتاز اسیدی و قلیایی در برخی از خاک‌های کشور

نویسندگان

1 عضو هیأت علمی موسسه تحقیقات خاک و آب، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران

2 عضو هیأت علمی مرکز تحقیقات کشاورزی و منابع طبیعی استان مازندران؛ سازمان تحقیقات، آموزش و ترویج کشاورزی، مازندران، ایران

3 عضو هیأت علمی مرکز تحقیقات کشاورزی و منابع طبیعی استان فارس؛ سازمان تحقیقات، آموزش و ترویج کشاورزی، فارس، ایران

4 عضو هیأت علمی مرکز تحقیقات کشاورزی و منابع طبیعی استان خوزستان؛ سازمان تحقیقات، آموزش و ترویج کشاورزی، خوزستان، ایران

5 عضو هیأت علمی مرکز تحقیقات کشاورزی و منابع طبیعی استان خراسان رضوی؛ سازمان تحقیقات، آموزش و ترویج کشاورزی، فارس، ایران

چکیده

فراهمی فسفر در خاک وابستگی زیادی به فعالیت آنزیم­های فسفاتاز اسیدی و قلیایی دارد. به ­منظور بررسی اثر کود شیمیایی فسفر و مواد آلی بر فعالیت این آنزیم­ها آزمایشی در قالب طرح بلوک کامل تصادفی با سه تکرار در کشت ذرت در استان­های خوزستان، خراسان رضوی، فارس و مازندران انجام شد. تیمارها شامل  تیمار یک: مصرف کود شیمیایی فسفری بر اساس آزمون خاک (P100%)، تیمار دو: مصرف ماده آلی از منبع اول به میزان 20 تن در هکتار (P0M2)، تیمار سه:  مصرف ماده آلی از منبع دوم  به میزان 20 تن در هکتار (P0M4)، تیمار چهار:  تیمار اول بعلاوه تیمار دوم (P100%M2)، تیمار پنج: تیمار اول بعلاوه تیمار سوم (P100%M4) و تیمار شش: بدون مصرف کود شیمیایی فسفری و مواد آلی (P0M0) بود. از هر استان 36 نمونه (قبل و بعد از کشت) و در کل از چهار استان 144 نمونه تهیه و مورد آزمون قرار گرفت. نتایج نشان داد که تاثیر تیمارها در دوران قبل و بعد از کشت ذرت به ترتیب بر روی میزان فعالیت آنزیم­های فسفاتاز 75 و 5/87 درصد از استان­های مورد مطالعه معنی­دار بوده است. پوشش گیاهی منجر به افزایش فعالیت آنزیم­های فسفاتاز نسبت به تیمارهای قبل از کشت شد. درحالیکه استفاده از تنها کود شیمیایی فسفر ، منجر به کاهش تقریبا 22 درصدی فعالیت این آنزیم­ها گردید، مصرف کود آلی منجر به افزایش فعالیت آنزیمی شد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of organic compounds on acid and alkaline phosphatase activity in some soils of Iran

نویسندگان [English]

  • M. Afshari 1
  • M. Ramezanpour 2
  • A. H. Ziaeian 3
  • H. Mousavifazl 4
  • H. R. Zabihi 5
1 Member of Scientific of Soil and Water Research Institute, Agricultural Research, Education and Extension Organization
2 Member of Scientific of Mazandaran Agricultural Research Center, Agricultural Research, Education and Extension Organization
3 Member of Scientific of Fars Agricultural Research Center, Agricultural Research, Education and Extension Organization
4 Member of Scientific of Khouzestan Agricultural Research Center, Agricultural Research, Education and Extension Organization
5 Member of Scientific of Khorasan-e- razavi Agricultural Research Center, Agricultural Research, Education and Extension Organization
چکیده [English]

Phosphorus availability in soils is largely depended on acidic and alkaline phosphatase activities. Soil organic matter content is one of the most important factors influencing the activity of those f enzymes. The present experiment was carried out in a randomized complete block design with three replications on corn planting time in four provinces of Khuzestan, Khorasan, Fars and Mazandaran. Treatments included chemical phosphorus fertilizer (P 100%), caw manure (P0 M2) 20 tons per hectare, organic fertilizer (P0 M4) 20 tons per hectare, the first treatment plus second treatment (P100% M2), the first treatment plus third treatment (P100% M4) and without any chemical phosphorus fertilizer and manure (P0 M0) as control. In all provinces cow manure was used but organic fertilizers were different in each province. In Mazandaran, compost of wood and paper industries; In Khorasan, compost of municipal waste; In Khuzestan, sugar cane bagasse compost and in Fars, municipal homemade was used as organic fertilizer. From each province 36 samples (before and after planting) were collected and a total of 144 samples were analyzed. The results of different treatments showed the positive effect of the simultaneous use of vegetation and organic fertilizers on acidic and alkaline phosphatase in soil samples. In all Provinces, the mean activity of alkaline phosphatase before and after corn planting period, was higher than acidic phosphatase.

کلیدواژه‌ها [English]

  • Organic Matter
  • Acid Phosphatase
  • alkaline phosphatase and phosphorus
  1. رضایی، ش. خاوازی، ک. نظامی، م. و سعادت، س. 1392. تأثیر گوگرد، فسفر و نقش گیاه بر زیست توده میکروبی و فعالیت فسفاتازهای خاک. مجله پژوهش­های خاک (علوم خاک و آب).  شماره 2.
  2. فریدونی ناغانی، م . رئیسی، ف . و فلاح، س. 1398. روند تولید  CO2و تغییر کربن بیومس میکروبی در خاک های تیمار شده با کود اوره و مرغی . مجله علوم و فنون کشاورزی و منابع طبیعی، علوم آب و خاک . شماره 54.
  3. قنبری مفتی کلایی، ه. بهمنیار، م..سالک گیلانی، س.  و رئیسی، ف. 1391. اثر سطوح مختلف شوری آب آبیاری و برخی مواد اصلاح کننده بر تنفس میکروبی و فعالیت فسفاتازهای اسیدی و قلیایی خاک ریزوسفری طی رشد رویشی سویا.مجله پژوهش های حفاظت آب و خاک.  شماره 3.
  4. محمدی، خ و سهرابی، ی. 1393. تأثیر روش های تلفیقی کود دهی بر غلظت نیتروژن، فسفر و خواص زیستی خاک و صفات کلزا. مجله پژوهش­های خاک (علوم خاک و آب).  شماره 1.
  5. Aleksieva, P., Spasova, D. and Radoerska S. 2003. Acid Phosphatase Distribution and Localization in the Fungus Humicola lutea. Zeitschrift fur Naturforschung C. Journal of Biosciences 58 (3): 239-243.
  6. Aseri, G.K., Neelam J. and Tarafdar J.C. 2009. Hydrolysis of Organic Phosphate Forms by phosphatases and Phytase Producing Fungi of Arid and Semi Arid Soils of India. American-Eurasian Journal of Agricultural & Environmental Science 5(4): 564-570.
  7. Burns, R. G. 1982. Enzyme actibity in soil: location and a possible role in microbial actibity. Soil Biology and Biochemistry 14: 423-427.
  8. Chen, H. 2003. Phosphatase activity and P fractions in soils of an 18-year-old Chinese fir (Cunninghamia lanceolata) plantation. Forest Ecology and Management 178: 301–310.
  9. Christenen, B.T. and Johnston, A. E. 1997. Soil organic matter and soil quality lessons learned from long-term experiments at Askov and Rothamsted.  Soil Quality for Crop Production and Ecosystem Health. Elsevier 6: 157-159.
  10. Dick, W. A. and Tabatabai, M. A. 1994. Significance and potential use of soil enzymes. Soil Microbial Ecology 14: 95-127.
  11. Eivazi, F. and Tabatabai, M. 1977. Phosphates in soils. Soil Biology and Biochemistry 9: 167-172.
  12. Ghoularata, M., Raeisi, F. and Nadian, H. 2008. Salinity and phosphorus interactions on growth yield and nutrient uptake by Berseem. Clover (Trifolium alexandrinum L.). I. Field Crops Research   6: 117-126.
  13. Guimaraes, L.H.S., Simone, C.P.N. and Michele, M. 2006. Screening of filamentous fungi for production of enzymes of biotechnological interest. Brazilian Journal of Microbiology 37: 474-480.
  14. Irshad, M., M. Inoue, R.A. Khattak, S. Yamamoto. and T. Honna. 2008. Phosphorus and metal fractions in paddy soils under different fertilizer management. Journal of Sustainable Agriculture 32: 255-268.
  15. Juma, N.G. and Tabatabai, M.A. 1977. Effects of trace elements on phosphatase activity in soils. Soil Science Society of America  41: 343–346.
  16. Kaur, K., Kapoor, K. K. and Gupta, A. P. 2005. Impact of organic manures with and without mineral fertilizers on soil chemical and biological properties under tropical conditions. Journal of Plant Nutrition and Soil Science 168: 117-122.
  17. Leelahawonge, C.  and Pongsilp, N. 2009. Phosphatase Activities of Root-nodule Bacteria and Nutritional Factors Affecting Production of Phosphatases by Representative Bacteria from Three Different Genera. KMITL science technology 9: 65-83.
  18. Liang, Y. C., Yang, Y. F., Yang, C. G., Shen, Q. R., Zhou, J. M., an Yang, L. Z. 2003. Soil enzymatic activity and growth of rice and barley as influenced by organic manure in and anthropogenic soil. Geoderma  115: 149-160.
  19. Makoi, J. H. J. R., Bambara, S. and Ndakidemi, P. A. 2010. Rhizosphere phosphatase enzyme activities and secondary metabolites in plants as affected by the supply of Rhizobium, lime and molybdenum in Phaseolus vulgaris L. Australian Journal of Crop Science 4: 590-597.
  20. Nicolardot, B., Fauvet, G. and Cheneby, D. 1994. Carbon and nitrogen cycling through soil microbial biomass at various temperatures. Soil Biology and Biochemistry 26: 253-261.
  21. Omer, Amal. M. and Farag, H. I. A. 2012. Biological activity of phosphate dissolving bacteria and their effect on some genotypes of barley production. Journal of Applied Sciences Research 8 (7): 3478-3490.
  22. Phukan, R., Samanta, R. and Barthakur, B. K. 2011. Phosphatase Activity of Aspergillus niger: A Native Tea Rhizosphere Isolate. Journal of Applied Science & Technology 77 (9): 403405.
  23. Safari, S.A.   and Sharifi, Z. 2007. Changes of available phosphorus and phosphatase activity in the rhizosphere of some field and vegetation crops in the fast growth stage. Journal of Applied Sciences and Environmental Management 11: 113-118.
  24. Saha,.S ,  Mina .B ,L,.  Gopinath ,K. A.,  Kundu ,S. and  Guptah , S. 2008. Relative changes in phosphatase activities as influenced by source and application rate of organic composts in field crops. Bioresource Technology  99: 1750–1757.
  25. Sanaullaha, M., Blagodatskaya, E., Chabbi, A., Rumpel, C. and Kuzyakov, Y. 2011. Drought effects on microbial biomass and enzyme activities in the rhizosphere of grasses depend on plant community composition. Applied Soil Ecology  48: 38–44
  26. Saparatka, N. 2003. Phosphatase activities (ACP- ALP) in Agro ecosystem Soils. Doctoral thesis. Swedish University of Agricultural Sciences.
  27. Tabatabai, M. A. and J. M. Bremner. 1969. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biology and Biochemistry 1: 301-307.
  28. TU. C., Rustaino, J. B. and Hu, S. 2006. Soil microbial biomass and activity in organic tomato farming systems: effects of organic inputs and straw mulching. Soil Biology and Biochemistry 38: 247-255.
  29. Wang, A. S., Angle, J. S., Chaney, R. L., Delorme, T. A. and McIntosh, M. 2006. Changes in soil biological activities under reduced soil pH during Thlaspi caerulescens phytoextraction. Soil Biology and Biochemistry 38: 1451–1461.