تأثیر بقایای آلی مختلف بر برخی خصوصیات و روند تغییرات عناصر‌غذایی در فرآیند تولید ورمی‌کمپوست

نویسندگان

1 دانش آموخته کارشناسی ارشد علوم خاک دانشگاه صنعتی شاهرود

2 دانشیار گروه علوم خاک دانشگاه صنعتی شاهرود

3 دانشیار گروه علوم خاک دانشگاه ارومیه

4 دانشیار گروه زراعت و اصلاح نباتات دانشگاه صنعتی شاهرود

چکیده

این تحقیق به ­منظور بررسی تغییرات برخی عناصر غذایی موجود در بقایای آلی در فرآیند تولید ورمی­کمپوست انجام گردید. مواد آلی شامل کود گاوی + سبوس گندم (CB)، کود گاوی+ کاه و کلش (CS)، کود گاوی+ لاشبرگ درختان چنار و افرا (CL)، کود گاوی+ بقایای هرس درختان سیب و انگور (CP)، کود گاوی+ ضایعات عرقیات بادرنجبویه (CE) به همراه تیمار شاهد کود گاوی (C) در حضور کرم خاکی Eisenia fetida تیمار گردید و در زمانهای صفر، 60، 120 و­180 روز برخی خواص کمپوست­ها و تغییرات عناصر غذایی ارزیابی گردید. مقادیر EC با گذشت زمان در تمام بقایای آلی افزایش معنی­داری داشت (dS/m 8/3-9/1­:EC) و pH در محدوده خنثی تا قلیایی قرار گرفت (4/7-5/6:pH). مقادیر CEC به طور معنی­داری در تمام تیمارها افزایش نشان داد و بیشترین مقدار آن در زمان 180 روز در تیمار CS (cmol + /kg364) مشاهده گردید. همچنین مقادیر فسفر و پتاسیم در بقایای آلی تجزیه شده به طور معنی­داری افزایش یافت و بیشترین مقدار این عناصر در تیمارهای CP و CS به ترتیب 01/1 و 31/2% بود. مقدار نیتروژن در تیمارهای CP، CE و CL به ترتیب 51/2، 97/1 و91/1 برابر مقدار اولیه افزایش نشان داد و میزان کربن آلی در طول تجزیه بقایا بطور معنی­داری کاهش یافت و بیشترین کاهش میزان کربن آلی در تیمار CE و­C به ترتیب 54/0 و52/0 برابر مقادیر اولیه مشاهده گردید. نسبت C/N در کلیه تیمارها بطور معنی­داری کاهش یافت که در تیمارهای CP و C بیشترین و کمترین مقادیر کاهش نسبت C/N به ترتیب 22/0و47/0 برابر مقادیر اولیه مشاهده گردید و مقدار نهایی این نسبت به ترتیب 28/8 و 10/8 شد. مقادیر NO3- و ­NH4+ در طول فرایند تولید ورمی­کمپوست، بطور معنی داری افزایش یافت و مقدار نیترات در تمام بقایای آلی بیشتر از آمونیوم بود. افزایش میزان عناصر غذایی ناشی از معدنی شدن مواد آلی، عاملی مؤثر در رسیدگی ورمی­کمپوست می­باشد. 

کلیدواژه‌ها


عنوان مقاله [English]

Effect of different organic residues on some vermicompost properties and nutrient trend during vermicomposting process

نویسندگان [English]

  • F. Houshyar Jabal Kandi 1
  • A. Abbaspour 2
  • M. H. Rasouli Sadaghiani 3
  • H. R. Asghari 4
1 MSc Student of Soil Science, University of Shahrood
2 Associate Professor of Soil Science, University of Shahrood
3 Associate Professor of Soil Science, University of Urmia
4 Associate Professor, Department of Agronomy and Plant Breeding, University of Shahrood
چکیده [English]

This study was conducted in order to investigate the changes of nutrient status during vermicomposting process from various organic residues. Organic materials included cow manure + wheat bran (CB), cow manure + wheat straw (CS), cow manure + sycamore and maple litter (CL), cow manure + apple and grape pruning waste (CP), cow manure + lemon balm extract wastes (CE) along with cow manure as control (C). These organic residues were treated in the presence of Eisenia fetida. Some properties of vermicompost and changes in nutrient contents were evaluated at 0, 60, 120 and 180 days. The results showed that EC and pH significantly increased over time in all examined organic wastes and ranged from 1.9 to 3.8 dSm-1 for EC and from 6.5 to 7.4 for pH. Cation exchange capacity (CEC) also increased noticeably, so that the highest CEC amount was observed at 180 days in CS treatment by 364 cmol(+)kg-1. Furthermore, P and K contents in decomposed organic wastes increased significantly and the highest amounts were obtained in CP and CS treatments by 1.01 and 2.31 %, respectively. The same uptrend happened for N content in CP, CE and CL treatments by 2.51, 1.97 and 1.91 fold compared to initial amounts. On the other hand, Organic carbon significantly decreased during decomposition and the highest decrement in organic carbon content was observed in CE and C treatments by 0.54 and 0.53 fold compared to initial values. C/N ratio in all examined treatments significantly decreased where the highest C/N ratio and the lowest decrease obtained in CP and C treatments by 0.22 and 0.47 fold compared to initial values. NO3- and NH4+ significantly increased during vermicomposting process as nitrate content was more than ammonium content in all treatments. Increasing the nutrients amount due to organic matter mineralization, is the effective factor in maturity level of vermicompost.

کلیدواژه‌ها [English]

  • Eisenia fetida
  • Nutrients
  • Organic wastes
  • Vermicompost
  1. رستمی، ر.ا.، ا. نبئی، ا. اسلامی و  ح. نجفی صالح. 2010. بررسی تأثیر تراکم کرم E. foetida بر pH، نسبت C/N و سرعت فرایند در فرایند تولید ورمی کمپوست از پسماندهای غذایی. مجله محیط شناسی. 35(52): 98-93.‎
  2. میربلوک، آ.، ا. لکزیان و غ. حق نیا غلامحسین. 1390. مقایسه خصوصیات شیمیایی، فیزیکی و درجه رسیدگی ورمی کمپوست بدست آمده از کود گاوی تیمار شده با ملاس چغندر قند، تهویه و خاک. نشریه زراعت. 33: 33-26.
  3. هاشمی مجد، ک.، م. کلباسی، ا. گلچین و ح. شریعتمداری. 1382. شناسایی گونه Eisenia  fetida بومی برخی از مناطق شمالی ایران و ارزیابی توان این گونه در تولید ورمی کمپوست. مجله علوم و فنون کشاورزی و منابع طبیعی. 7(4): 68-61.‎
  4. هنرور، م.، س. سماوات، م. ح. داوودی و خ. کریمی. 1390. امکان تولید کمپوست و ورمی کمپوست از ضایعات چغندر قند مصرفی کارخانه قند. مجله علوم غذایی و تغذیه. 8(3): 54-46.
  5. Atiyeh, R.M., Lee, S., Edwards, C.A., Arancon, N.Q. and Metzger, J.D. 2002. The influence of humic acids derived from earthworm-processed organic wastes on plant growth. Bioresource Technology 84(1):7-14.
  6. Atiyeh, R.M., Subler, S., Edwards, C.A., Bachman, G., Metzger, J.D. and Shuster, W. 2000. Effects of vermicomposts and composts on plant growth in horticultural container media and soil. Pedobiologia 44(5):579-590.
  7. Bansal, S. and Kapoor, K.K. 2000. Vermicomposting of crop residues and cattle dung with Eisenia foetida.ظBioresource Technology 73(2):95-98.
  8. Benito, M., Masaguer, A., Moliner, A., Arrigo, N. and Palma, R.M. 2003. Chemical and microbiological parameters for the characterisation of the stability and maturity of pruning waste compost. Biology and Fertility of Soils 37(3):184-189.
  9. Bower, C.A., Reitemeier, R.F. and Fireman, M., 1952. Exchangeable cation analysis of saline and alkali soils. Soil Science 73(4):251-262.
  10. Fares, F., Albalkhi, A., Dec, J., Bruns, M.A. and Bollag, J.M. 2005. Physicochemical characteristics of animal and municipal wastes decomposed in arid soils. Journal of Environmental Quality 34(4):1392-1403.
  11. Garg, P., Gupta, A. and Satya, S. 2006. Vermicomposting of different types of waste using Eisenia foetida: A comparative study. Bioresource Technology 97(3):391-395.
  12. Gómez-Brandón, M., Lazcano, C. and Domínguez, J. 2008. The evaluation of stability and maturity during the composting of cattle manure. Chemosphere 70(3):436-444.
  13. Kaushik, P. and Garg, V.K. 2003. Vermicomposting of mixed solid textile mill sludge and cow dung with the epigeic earthworm Eisenia foetida. Bioresource Technology 90(3):311-316.
  14. Keeney,  D. R.  and D.W. Nelson. 1982. Nitrogen inorganic forms. In: page al, Miller R.H. Keeney D.R. methods of soil analysis, part 2. Chemical and microbiological properties, 2nd . ASA, SSSA, Madison, Wis.: 648-649.
  15. Khwairakpam, M. and Bhargava, R. 2009. Vermitechnology for sewage sludge recycling. Journal of Hazardous Materials 161(2):948-954.
  16. Komilis, D.P. and Ham, R.K. 2006. Carbon dioxide and ammonia emissions during composting of mixed paper, yard waste and food waste. Waste Management 26(1):62-70.
  17. Maboeta, M.S. and Van Rensburg, L. 2003. Vermicomposting of industrially produced woodchips and sewage sludge utilizing Eisenia fetida. Ecotoxicology and Environmental Safety 56(2):265-270.
  18. Madan, S. and Yadav, A. 2012. Vermicomposting of distillery sludge with different wastes by using Eisenia fetida. Advances in Applied Science Research 3(6):3844-3847.
  19. Majlessi, M., Eslami, A., Saleh, H.N., Mirshafieean, S. and Babaii, S. 2012. Vermicomposting of food waste: assessing the stability and maturity. Iranian Journal of Environmental Health science and Engineering  9(1): 1-25
  20. Moradi, H., Fahramand, M., Sobhkhizi, A., Adibian, M., Noori, M., Abdollahi, S. and Rigi, K. 2014. Effect of vermicompost on plant growth and its relationship with soil properties. International Journal of Farming and Allied Sciences 3(3):333-338.
  21. Morais, F.M.C. and Queda, C.A.C. 2003. Study of storage influence on evolution of stability and maturity properties of MSW composts. In Advances for a sustainable Society Part II: Proceedings of the fourth International Conference of ORBIT association on Biological Processing of Organics. Perth, Australia.
  22. Ndegwa, P.M. and Thompson, S.A. 2001. Integrating composting and vermicomposting in the treatment and bioconversion of biosolids. Bioresource Technology 76(2):107-112.
  23. Ndegwa, P.M. and Thompson, S.A. 2000. Effects of C-to-N ratio on vermicomposting of biosolids. Bioresource Technology 75(1):7-12.
  24. Nelson, R. E. and Sommers, L. E. 1982. Total carbon, Organic carbon and organic matter. In A. L. Page et al. (ed) Methods of Soil Analysis. Part2. 2nd. Agron. Monogr. 9. ASA and SSSA, Madison, WI. 539-579.
  25. Parthasarathi, K. and Ranganathan, L.S. 2000. Chemical characterization of mono and polycultured soil wormcasts by tropical earthworms. Environment and Ecology 18(3):742-746.
  26. Plaza, C., Nogales, R., Senesi, N., Benitez, E. and Polo, A. 2008. Organic matter humification by vermicomposting of cattle manure alone and mixed with two-phase olive pomace. Bioresource Technology 99(11):5085-5089.
  27. Pramanik, P., Ghosh, G.K., Ghosal, P.K. and Banik, P. 2007. Changes in organic–C, N, P and K and enzyme activities in vermicompost of biodegradable organic wastes under liming and microbial inoculants. Bioresource Technology 98(13):2485-2494.
  28. Sarojini, S., Ananthakrishnasamy, S., Manimegala, G., Prakash, M. and Gunasekaran, G. 2009. Effect of lignite fly ash on the growth and reproduction of earthworm  Eisenia fetida. Journal of Chemistry 6(2):511-517.
  29. Sharma, S. 2003. Municipal solid waste management through vermicomposting employing exotic and local species of earthworms. Bioresource Technology 90(2):169-173.
  30. Shi-Wei, Z. and Fu-Zhen, H., 1991. The nitrogen uptake efficiency from 15N labeled chemical fertilizer in the presence of earthworm manure (cast). Advances in Management and Conservation of Soil Fauna:539-542.
  31. Sinha, R.K., Herat, S., Valani, D., Singh, K. and Chauhan, K. 2010. Vermitechnology for Sustainable Solid Waste Management: A Comparative Study of Vermicomposting of Food & Green Wastes with Conventional Composting Systems to Evaluate the Efficiency of Earthworms in Sustainable Waste Management with Reduction in Greenhouse Gas Emissions.
  32. Suthar, S. 2009. Vermicomposting of vegetable-market solid waste using Eisenia fetida: Impact of bulking material on earthworm growth and decomposition rate. Ecological Engineering 35(5):914-920.
  33. Suthar, S. 2006. Potential utilization of guar gum industrial waste in vermicompost production. Bioresource Technology 97(18):2474-2477.
  34. Suthar, S. and Singh, S. 2008. Feasibility of vermicomposting in biostabilization of sludge from a distillery industry. Science of the Total Environment 394(2):237-243.