تأثیر گوگرد در شرایط رطوبتی مختلف بر اکسیداسیون گوگرد و برخی از خصوصیات شیمیایی خاک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری علوم خاک دانشکده کشاورزی دانشگاه تربیت مدرس، عضو هیأت علمی بخش تحقیقات خاک و آب، مرکز تحقیقات، آموزش کشاورزی و منابع طبیعی استان کرمانشاه، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران

2 کشاورزی و منابع طبیعی استان کرمانشاه، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران

3 استاد موسسه تحقیقات خاک وآب، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران

4 استادیار موسسه تحقیقات خاک وآب، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران

چکیده

در خاک­های آهکی از گوگرد برای کاهش pH خاک و افزایش حلالیت عناصرغذایی استفاده می­شود که تأثیر آن به اکسیداسیون گوگرد و عوامل مؤثر بر آن (مانند رطوبت خاک) بستگی دارد. در این پژوهش تأثیر دو رژیم رطوبتی (40 و 60 درصد رطوبت اشباع) و چهار سطح گوگرد (۰، ۵۰۰، ۱۰۰۰ و ۱۰۰۰۰ کیلوگرم بر هکتار)، در سه تکرار و در قالب طرح بلوک­‌های کامل تصادفی بر دو سری خرقانی و خالدار، به مدت یک سال، در درجه حرارت ثابت 25 درجه سانتی‌گراد و در آزمایشگاه مؤسسه تحقیقات خاک و آب بررسی شد. مقایسه میانگین داده­ها نشان داد که با کاربرد گوگرد در شرایط مختلف رطوبتی pHکاهش، هدایت الکتریکی، فسفر، آهن و روی قابل استفاده، سولفات محلول خاک افزایش و بین تأثیر تیمار­های مختلف روی صفات اندازه­گیری شده، اختلاف معنی­داری در سطح یک درصد (P<0.01) مشاهده شد. بیش­ترین مقدار کاهش pH، افزایش هدایت الکتریکی، آهن و روی قابل­استفاده و سولفات محلول خاک با کاربرد 10000 کیلوگرم گوگرد بر هکتار بود که اختلاف pH، هدایت الکتریکی و سولفات محلول خاک نسبت به تیمار شاهد به­ترتیب در خاک خرقانی 38/0 واحد، 72/1 دسی زیمنس بر متر، 2588 میلی­گرم بر کیلوگرم و در 60 روز، در خاک خالدار 1/2 واحد، 2/3 دسی زیمنس بر متر، 4984 میلی­گرم برکیلوگرم و در 360 روز انکوباسیون و در شرایط رطوبتی 40 درصد رطوبت اشباع بود. در سری خالدار مقدار آهن و روی قابل­استفاده نسبت به تیمار شاهد به­ترتیب 53/3 و 87/0 میلی­گرم برکیلوگرم افزایش یافت. در سری خرقانی و خالدار، بیش­ترین مقدار فسفر قابل­استفاده با کاربرد 1000 کیلوگرم گوگرد بر هکتار مشاهده شد که اختلاف آن­ نسبت به تیمار شاهد به­ترتیب 5/0 و 1/4 میلی­گرم بر کیلوگرم بود. با افزایش مقدار گوگرد مصرفی و زمان آنکوباسیون، مقدار اکسیداسیون گوگرد کاهش و بیش­ترین مقدار آن با کاربرد 500 کیلوگرم گوگرد بر هکتار بود. با توجه به نتایج به­دست آمده کاربرد گوگرد تا 1000 کیلوگرم بر هکتار پیشنهاد می­شود.

کلیدواژه‌ها


عنوان مقاله [English]

Sulfur Oxidation under Different Moisture Conditions and its Effect on some Chemical Soil Characteristics

نویسندگان [English]

  • J. ghaderi 1
  • M. J. Malakouti 2
  • K. Khavazi 3
  • M. H. Davoodi 4
1 Assistance professor of Soil and Water Research Department, Kermanshah Agricultural and Natural Resources Research and Education Center, AEEO, Iran
2 Professor, Department of Soil Science, Tarbiat Modares University, Tehran, Iran
3 Professor of Soil and Water Research Institute, Agricultural Research, Education and Extension Organization, Tehran, Iran
4 Assistance professor of Soil and Water Research Institute, Agricultural Research, Education and Extension Organization, Tehran, Iran
چکیده [English]

Sulfur is mainly used to reduce soil pH and increasing nutrients availability in the calcareous soils. However, this process strongly depends on oxidation rate and its affecting factors (e.g. soil moisture content). In this research, the impacts of two soil moisture regimes (40 and 60 % of saturation) and four Sulfur levels (0, 500, 1000 and 10000 kg ha-1) inoculated with Thiobacillus bacteria on sulfur oxidation rates and some chemical soil characteristics were assessed in a complete randomized blocks design with three replications and two soil types (Kharghani and Khaldar) during one year and under constant 25 Co temperature. In this research, soil pH, electrical conductivity (EC), Phosphorus (P), Iron (Fe), Zinc (Zn) and sulfate concentration (SO42-) were measured. The results revealed that the pH adversely significantly (P<0.01) decreased with increasing sulfur amount, while EC, Fe, Zn and SO4 increased. The highest amount of pH reduction, increasing of EC, Fe, Zn and SO42-observed with application of 10,000 kg Sulfur ha-1. Finally, the respective difference for pH, EC and SO42-compared withcontrol treatment in the Khargani soil were 0.38 units, 1.72 dS m-1, 2588 mg kg-1 and 60 days’ incubation; and in khaldar soil 2.1 units, 3.2 dS m-1and 4984 mg kg-1 in 360 days’ incubation. The amount of Fe and Zn available were found 3.53 and 0.87 mg kg-1, respectively indicating significant increasing compared with control plot in Khaldar soil. The highest P content was observed 0.5 and 4.1 mg kg-1 in Khargani and khaldar soils, respectively followed by 1000 kg Sulfur ha-1 application. It is concluded that the amount of sulur oxidation decreased followed by increasing in both sulfur content and incubation period. The highest increment was observed by applying 500 kg Sulfur ha-1. According to the results, Sulfur application up to 1000 kg ha-1 is suggested.

کلیدواژه‌ها [English]

  • Electrical conductivity
  • pH
  • Phosphorus
  • Sulfate
  1. بشارتی، ح.، خسروی، ه.، مستشاری، م.، میرزاشاهی، ک.، قادری، ج. و ذبیحی، ح. 1395. بررسی اثر تیوباسیلوس، گوگرد و فسفات بر شاخص­های رشد ذرت در برخی از مناطق ایران. مجله علمی و پژوهشی تحقیقات کاربردی خاک، انتشارات دانشگاه ارومیه. جلد 4، شماره 1 صفحه 112-103.
  2. علی احیایی، م. و بهبهانی، ع. ا. 1372. شرح روش­های تجزیه خاک. نشریه شماره 893. چاپ اول. انتشارات موسسه تحقیقات خاک و آب، ایران.
  3. کسراییان، ع، کریمیان، ن. ع. و پذیرا، ا. 1391. تأثیرگوگرد بر فرآیند گیاه پالایی اسفناج از خاک­های آهکی آلوده به کادمیم. مجله آب و فاضلاب. شماره 2، صفحه 58-52.
  4. کشمیری، ف. 1362. گزارش مطالعات نیمه­تفصیلی خاک­شناسی وطبقه­بندی دشت­های خرم آباد –بروجرد. نشریه شماره 671، انتشارات موسسه تحقیقات خاک و آب، تهران، ایران.
  5. گوهرگانی، ج. 1394. مدیریت مصرف گوگرد بر قابلیت جذب عناصر کم­مصرف در خاک و دانه کلزا در یک خاک آهکی. نشریه علمی و پژوهشی زیست­شناسی خاک. جلد 3 شماره 1، صفحه 82-73.
  6. ملکوتی، م .ج.، کشاورز، پ. و کریمیان، ن. ع. 1387. روش جامع تشخیص و توصیه بهینه کود برای کشاورزی پایدار. چاپ اول. انتشارات دانشگاه تربیت مدرس، 550 صفحه.
  7. ناصری، م. ح. 1371. گزارش مطالعات اجمالی خاک­شناسی وطبقه­بندی اراضی دشت بسطام استان سمنان. نشریه شماره 867، انتشارات موسسه تحقیقات خاک و آب، تهران، ایران.
  8. Abdel-Fattah, A., Rasheed, M. A. and Shafei, A. M. 2005. Phosphorus availability as Influenced by different application rates of elemental sulfur to soils. Egyptian Journal of Soil Science 45(2): 199 –208.
  9. Abdou, A., Soaud, A. A., Al Darwish, F. H., Saleh, M. E., El-Tarabily, K. A., Sofian-Azirun, M. and Motior, R. M. 2011. Effects of elemental sulfur, phosphorus, micronutrients and Paracoccus versutus on nutrient availability of calcareous soils. Australian Journal of Crop Science 5(5):554-561.
  10. Aulakh, M. S., Jaggi, R. C. and Sharma, R. 2002 Mineralization-immobilization of soil organic S and oxidation of elemental S in subtropical soils under flooded and non-flooded conditions. Biology and Fertility of soils Journal 35:197–203.
  11. Chesnin, L. and Yien, C. H. 1951 Turbidimetric determination of available sulfates. Soil Science Society of American Proceedings 15:149–151.
  12. El-Kholy, A. M., Ali, O. M., El-Sikhry, E. M. and Mohamed, A. l. 2013. Effect of Sulfur application on the availability of some nutrients in Egyptian soils. Egyptian Journal of Soil Science 53(3): 361-377.
  13. El-Tarabily, K. A., Soaud, A. A., Saleh, M. E. and Matsumoto, S. 2006. Isolation and characterization of sulfur oxidizing bacteria, including strains of Rhizobium, from calcareous sandy soils and their effects on nutrient uptake and growth of maize (Zea mays L). Australian Journal of Agricultural Research 57(1): 101-111.
  14. Falatah, A. M. 1998. Synergistic effects of elemental sulfur and synthetic organic conditioner amendments on selected chemical properties of calcareous soils. Arid Soil Research and Rehabilitation 12(1): 73-82.
  15. Hashemimajd, K., Mohamadi farani, T. and Jamaati, S. 2012. Effect of elemental sulfur and compost on pH, electrical conductivity and phosphorus availability of one clay soil. African Journal of Biotechnology 11(6): 1425-1432.
  16. Jaggi, R. C., Aulakh, M. S. and Sharma, R. 1999 Temperature effects on soil organic sulfur mineralization and elemental sulfur oxidation in subtropical soils of varying pH. Nutrition Cycling Agroecosystem 54:175–182.
  17. Jaggi, R. C., Aulakh, M. S. and Sharma, R. 2005. Impacts of elemental S applied under various temperature and moisture regimes on pH and available P in acidic, neutral and alkaline soils. Biology and Fertility of soils Journal 41, 52-58.
  18. Janzen, H. H. and Bettany, J. R. 1987. Oxidation of elemental sulfur under field conditions in central Saskatchewan. Canadian Journal of Soil Science 67:609-618.
  19. Kalbasi, M., Filsoof F. and Rezai-Nejad, Y. 1988. Effect of sulfur treatments on yield and uptake of Fe, Zn and Mn by corn, sorghum and soybeans. Journal of Plant Nutrition 11: 1353-1360.
  20. Kaplan, M. and Orman S. 1998. Effect of elemental sulfur and sulfur containing waste in a calcareous soil in Turkey. Journal of Plant Nutrition 21: 1655-1665.
  21. Karimizarchi, M., Aminuddin, H., Khanif, M. Y., and Radziah, O. 2014a. Elemental sulfur application effects on nutrient availability and sweet maize response (Zea mays L.) in a high pH soil of Malaysia. Malaysian Journal of Soil Science 18: 75-86.
  22. Lindemann, W. C., Aburto, J. J., Haffner, W. M. and Bono, A. A. 1991. Effect of sulfur source on
  23. sulfur oxidation. Soil Science Society of America Journal 55:85-90.
  24. Lindsay, W. L. and Norvell, W. A. 1978. Development of a DTPA test for zinc, iron, manganese, and copper. Soil Science Society of America Journal 42: 421-428.
  25. McCray, J. M. and Rice, R.W. 2013. Sugarcane yield response to elemental sulfur on high pH organic soils. Proceedings of the International Society of Sugar Cane Technologists 28: 280–287.
  26. Modaihsh, A. S., Al-Mustafa, W. A. and Metwally, A. I. 1989. Effect of elemental sulfur on chemical changes and nutrient availability in calcareous soils. Journal of Plant and Soil 16: 95–101.
  27. Neilsen, D., Hogue, E., Hoyt, P. and Drought, B. 1993. Oxidation of elemental sulfur and acidulation of calcareous orchard soils in southern British Columbia. Canadian Journal of Soil Science. 73, 103-114
  28. Orman, S. and Hüseyin, O. 2012. Effects of sulfur and zinc applications on growth and nutrition of bread wheat in calcareous clay loam soil. African Journal of Biotechnology 11 (13):3080-3086.
  29. Orman, Ş. and Kaplan, M. 2009. Determination of sulfur contents in tomato grown in greenhouses in West Mediterranean Region, Turkey. Asian Journal Chemistry 21(1): 484-498.
  30. Safaa, M. M., Khaled, S. M. and Hanan, S. 2013. Effect of elemental sulfur on solubility of soil nutrients and soil heavy metals and their uptake by maize plants. Journal of American Science9(12): 19-24.
  31. Slaton, N. A. 1998. The influence of elemental sulfur amendments on soil chemical properties and Rice growth. University of Arkansas. A dissertation of Doctor of Philosophy.
  32. Tisdale, S. L. and Nelson, W. L. 1958. Soil Fertility and Fertilizers. 2nd Ed. McMillan Publishing Company. New York, USA.
  33. Turan, M. A., Taban, S., Katkat, A. V. and Kucukyumuk, Z. 2013. The evaluation of the elemental sulfur and gypsum effect on soil pH, EC, SO4-S and available Mn content. Journal of Food, Agriculture and Environment 11 (1): 572-575.
  34. Watkinson, J. and Blair, G. 1993. Modelling the oxidation of elemental sulfur in soils. Fertilizer Research 35:115-12.
  35. Wainwright, M., Nevell W. and Grayston, S. J. 1986. Effects of organic matter on sulfur oxidation in soil and influence of sulfur oxidation on soil nitrification. Plant and Soil 96: 369-376.