اثر بیوچار کود مرغی و قارچ فونلیفورمیس موسه بر رشد، غلظت و جذب برخی عناصر پرمصرف و شاخص سبزینگی در گیاه ذرت تحت تنش شوری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری شیمی و حاصلخیزی خاک دانشکده کشاورزی دانشگاه شیراز

2 استاد بخش علوم خاک دانشکده کشاورزی دانشگاه شیراز

3 استادیار بخش علوم خاک دانشکده کشاورزی دانشگاه شیراز

4 دانشیار بخش علوم خاک دانشکده کشاورزی دانشگاه شیراز

چکیده

شوری از مهم­ترین تنش‌های محیطی در جهان است، که یکی از اثرات منفی آن ایجاد اختلال در جذب عناصر غذایی به دلیل غلظت بالای یون­های سدیم و کلر می‌باشد. این تحقیق به منظور بررسی امکان استفاده از قدرت جذب بالای بیوچار در جذب سدیم، کاهش نسبت سدیم به پتاسیم گیاه و کاهش اثرات منفی شوری بر رشد گیاه، غلظت و جذب نیتروژن و فسفر همراه با کاربرد قارچ ریشه به عنوان اصلاح کننده زیستی بود. این پژوهش به صورت فاکتوریل در قالب طرح کاملاً تصادفی در سه تکرار انجام شد. تیمار­ها شامل مواد آلی در پنج سطح ]عدم مصرف ماده آلی، کود مرغی (%1 و %2) و بیوچار کود مرغی (%1 و %2)[، شوری در چهار سطح ( 5/0، 6/3، 9/7، و 4/12 دسی‌زیمنس بر متر) و قارچ در دو سطح (شاهد بدون قارچ و مایه­زنی بافونلیفورمیس موسه)بودند. کاربرد کود مرغی وبیوچار به طور معنی­داری وزن خشک، شاخص سبزینگی، غلظت وجذب عناصر پرمصرف را افزایش اما درصد کلنیزاسیون ریشه را کاهش دادند. کاربرد کود مرغی غلظت سدیم گیاه ذرت را به طور معنی­داری ‌افزایش داد. با این حال، کاربرد بیوچار کود مرغی تغییری در غلظت سدیم گیاه در مقایسه با تیمار شاهد نشان نداد، اما افزایش غلظت پتاسیم اندام‌هوایی نسبت سدیم به پتاسیم گیاه را به طور معنی‌داری کاهش داد. کاربرد بیوچار در سطوح شوری بالا و متوسط (9/7 و 4/12 دسی‌زیمنس بر متر) نسبت سدیم به پتاسیم را در اندام‌هوایی گیاه کاهش داد. هرچند کاربرد قارچ در سطح 2% بیوچار (به دلیل بالا بودن میزان فسفر بیوچار)، تفاوت معنی‌داری را در رشد گیاه ایجاد نکرد. به طور­کلی نتایج نشان داد که میزان عملکرد ماده خشک ذرت در تیمار یک درصد بیوچار همراه با فونلیفورمیس موسه مشابه عملکرد در تیمار دو درصد کود مرغی بود و همچنین مانع کارایی قارچ در کاهش نسبت سدیم به پتاسیم اندام هوایی گیاه در سطوح بالای شوری نگردید.

کلیدواژه‌ها


عنوان مقاله [English]

Influence of Poultry Manure-Derived Biochar and Funneliformis mosseae on Dry Matter Yield, Centration and Uptake of some nutrient Elements, Greenness Index in Corn Grown under Salinity Stress

نویسندگان [English]

  • R. Kazemi 1
  • A. Ronaghi 2
  • J. Yasrebi 3
  • R. Ghasemi-Fasaei 4
  • M. Zarei 4
1 PhD student of Soil Science Department, college of agriculture, Shiraz University, Shiraz, Iran
2 Professor of soil science department, College of Agriculture, Shiraz University, Shiraz, Iran
3 Assistant Professor of Soil Science Department, College of Agriculture, Shiraz University, Shiraz
4 Associate Professor of Soil Science Department, College of Agriculture, Shiraz University, Shiraz, Iran
چکیده [English]

Salinity is among the most important stresses worldwide that affect the absorption and transport of nutrients to plants due to its high sodium concentration. The objective of this study was investigate the possibility of using high adsorption capacity of biochar for increasing sodium adsorption, reducing sodium to potassium ratio of the plant and reducing the negative effect of salinity on plant growth, concentration and uptake of nitrogen and phosphorus with use of mycorrhizal as an bio-amendment. This research was conducted with factorial arrangement in completely randomized design with three replications. Treatments consisted of five levels of organic substances (control, poultry manure (PM)(1% and 2%), poultry manure biochar (PMB) (1% and 2%), four salinity levels (0.5, 3.6, 7.9 and 12.4 dS.m-1) and two fungus levels (control and inoculated with Funneliformis mosseae). Application of PM and its biochar significantly increased growth, greennessindex, concentration and uptake of macronutrients, but decreased percentage of root colonization. Application of PM significantly increased corn plant sodium concentration. Application of PMB had no significant effect on sodium concentration compared to the control treatment, but significantly reduced shoot sodium/potassium ratio (Na+: K+) by increasing potassium concentration. Biochar application at high levels of salinity (7.9 and 12.4 dS.m-1) significantly reduced shoots Na+: K+ ratio. AMF application did not affect plant growth due to the high amount of phosphorous at 2% PMB treatment. In general, results indicated that corn dry matter yield at co-application of fungus and 1% biochar treatment was similar to 2% PM treatment and also, did not inhibit the effectiveness of fungus in reducing the shoot sodium to potassium ratio at high salinity levels.

کلیدواژه‌ها [English]

  • Arbuscular mycorrhizal fungus
  • Corn
  • pyrolysis
  • Sodium-to- potassium ratio
  • Sodium chloride
  1. احمدی قشلاقی, س.، علی اصغرزاد، ن.، توسلی، ع. 1394. بررسی جذب عناصر غذایی و عملکرد گیاه ذرت میکوریزی در شرایط تنش شوری. دانش آب و خاک, 25(1), 79-89.‎
  2. پارسامطلق، ب.، س. محمودی، م. سیاری، و نقی زاده، م.1390. تأثیر قارچ میکوریزا و کود فسفر بر غلظت رنگیزه­های فتوسنتزی و عناصر غذایی لوبیا (.Phaseolus vulgaris L) در شرایط تنش شوری. نشریه بوم شناسی کشاورزی. 3(2): 233-244.
  3. روحانی، ن. س., نعمتی, س. ح.، مقدم، م.، اردکانیان، و. 1395. اثر تنش شوری بر خصوصیات فیزیولوژیک و چگونگی جذب عناصر سدیم و پتاسیم در اندام هوایی و غده سه رقم تربچه.‎ علوم و فنون کشت های گلخانه­ای. سال هفتم. 27 (169-178).
  4. زارعی، م. 1387. ﺑﺮرﺳﻲ ﺗﻨﻮع ﺧﺎک­ﻫﺎی ﻣﻴﻜﻮرﻳﺰی آرﺑﻮﺳﻜﻮﻻر در خاک­ﻫﺎی آﻟﻮده ﺑﻪ ﻓﻠﺰات ﺳـﻨﮕﻴﻦ و ﻛـﺎراﻳﻲ آنﻫـﺎ در ﮔﻴـﺎه ﭘـﺎﻻﻳﻲ. رﺳـﺎﻟﻪ دﻛﺘﺮی ﺧﺎﻛﺸﻨﺎﺳﻲ ﭘﺮدﻳﺲ ﻛﺸﺎورزی و ﻣﻨﺎﺑﻊ ﻃﺒﻴﻌﻲ داﻧﺸﮕﺎه ﺗﻬﺮان
  5. کاظمینی، س. ع.، دهقانی، ا.، زارعی، م.، علی نیا، م. 1396. تأثیر تنش شوری و قارچ میکوریزا بر خصوصیات مورفوفیزیولوژیک گیاه ذرت‌ شیرین. مجله تولید و فرآوری محصولات زراعی و باغی. ۷ (۱) :۱۰۱-۱۱۳
  6. گویلی، ا.، موسوی، س. ع.، کامگار حقیقی، ع. ا. 1395. اثر بیوچار کود گاوی و تنش رطوبتی بر ویژگی­های رشد و کارایی مصرف آب اسفناج در شرایط گلخانه­ای. پژوهش آب در کشاورزی, 30(2).‎
  7. نادیان, ح.، حیدری, م.، قرینه, م. ح.، دانشور، م. ح. 1392. اثر سطوح مختلف کلرید سدیم و کلونیزاسیون میکوریزایی بر رشد و جذب فسفر،‏ پتاسیم و سدیم توسط گیاه زعفران (.‏ Crocus sativus L‏)‏. تولیدات گیاهی (مجله علمی کشاورزی)، 3(2): 49-59.
  8. Abbasi, M. K. and  Anwar, A. A. 2015. Ameliorating effects of biochar derived from poultry manure and white clover residues on soil nutrient status and plant growth promotion-greenhouse experiments. PloS one 10 (6): e0131592.
  9. Ahmad, M. Rajapaksha, A. U. Lim, J. E. Zhang, M. Bolan, N. Mohan, D. Vithanage, M. Lee, S.S. and Ok, Y. S. 2014. Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99: 19-33.
  10. Akhtar, S.S. Andersen, M. N. Liu, F. 2015. Biochar mitigates salinity stress in potato.  Journal of Agronomy and Crop Science 201: 368-378.
  11. Al-Karaki, G. N. 2000. Growth of mycorrhizal tomato and mineral acquisition under salt stress. Mycorrhiza 10(2): 51-54.
  12. Amini, S. Ghadiri, H. Chen, C. and Marschner, P. 2016. Salt-affected soils, reclamation, carbon dynamics, and biochar: a review. Journal of Soils and Sediments 16: 939–953.
  13. Auge, R. M. Toler, H. D. and Saxton, A. M. 2014. Arbuscular mycorrhizal symbiosis and osmotic adjustment in response to NaCl stress: a meta-analysis. Frontiers in plant science 5: 562.
  14. Balzergue, C. Chabaud, M. Barker, D. G. Becard, G. and Rochange, S. F. 2013. High phosphate reduces host ability to develop arbuscular mycorrhizal symbiosis without affecting root calcium spiking responses to the fungus. Frontiers in Plant Science 4: 1-15.
  15. Bouyoucos, C.J. 1962. Hydrometer method for making particle-size analysis for soils. Agronomy Journal 54: 464-465.
  16. Bremner, J.M. 1996. Nitrogen total. P. 1085- 1122. In: Sparks, D.L., (ed), Methods of Soil Analysis part 3: Chemical methods. ASA and SSSA, Madison, WI.
  17. Cottenie, A. 1980. Soil and plant testing as a basis of fertilizer recommendation. FAO Soils Bulletin, no. 38/2. Rome: FAO, Land and Water Development Division; 120 p.
  18. Elhindi, K. M. El-Din, A. S. and Elgorban, A.M. 2017. The impact of arbuscular mycorrhizal fungi in mitigating salt-induced adverse effects in sweet basil (Ocimum basilicum L.). Saudi journal of biological sciences 24(1): 170-179.
  19. Evelin, H. Kapoor, R. and Giri, B. 2009. Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Annals of botany 104(7): 1263-1280.
  20. Fang, Y. Singh, B. singh, B. P. and Krull, E. 2014. Biochar carbon stability in four contrasting soils. European Journal of Soil Science 65:60–71
  21. Farooq, M. Hussain, M. Wakeel, A. and Siddique, K.H. 2015. Salt stress in maize: effects, resistance mechanisms, and management. A review. Agronomy for Sustainable Development 35(2): 461-481.
  22. Garcia Morales, S. Trejo-Tellez, L.I. Gomez Merino, F.C. Caldana, C., Espinosa-Victoria, D., and Herrera Cabrera, B. E. 2012. Growth, photosynthetic activity, and potassium and sodium concentration in rice plants under salt stress. Acta Scientiarum. Agronomy 34(3): 317-324.
  23. George, E. Marschner, H. and Jakobsen, I. 1995. Role of arbuscular mycorrhizal fungi in uptake of phosphorus and nitrogen from soil. Critical Reviews in Biotechnology 15(3-4): 257-270.
  24. Gosling, P. Mead, A. Proctor, M. Hammond, J. P. and Bending, G.D. 2013. Contrasting arbuscular mycorrhizal communities colonizing different host plants show a similar response to a soil phosphorus concentration gradient. New Phytologist 198(2): 546-556.
  25. Hasegawa, P.M. Bressan, R.A. Zhu, J.K. and Bohnert, H.J. 2000. Plant cellular and molecular responses to high salinity. Annual review of plant biology, 51(1): 463-499.
  26. Hoffman, G.J. Maas, E.V. Pritchard, T.L. Meyer, J.L. 1983. Salt tolerance of corn in the Sacramento–San Joaquin Delta of California. Irrigation Science 4: 31–44.
  27. Hussain, M. Park, H.W. Farooq, M., Jabran, H. Lee, D.J. 2013. Morphological and physiological basis of salt resistance in different rice genotypes. International Journal of Agriculture and Biology 15:113–118
  28. Kanwal, S. Ilyas, N. Shabir, S. Saeed, M. Gul, R. Zahoor, M. and Mazhar, R. 2017. Application of biochar in mitigation of negative effects of salinity stress in wheat (Triticum aestivum L.). Journal of Plant Nutrition 1-13.
  29. Kaya, C. Tuna, A.L. Okant, A.M. 2010. Effect of foliar applied kinetin and indole acetic acid on maize plants grown under saline conditions. Turkish Journal of Agriculture and Forestory 34:529–538.
  30. Kormanic, P. P. and McGraw, A. C. 1982. Quantification of vesicular-arbuscular mycorrhizae in plant roots. P. 37-45. In Methods and Principles of Mycorrhizal Research. N. C. Schenck (eds.), American Phytopathological Society, St Paul, MN, USA
  31. Lashari, M.S. Ye, Y. Ji, H. Li, L. Kibue, G.W. Lu, H. and Pan, G. 2015. Biochar–manure compost in conjunction with pyroligneous solution alleviated salt stress and improved leaf bioactivity of maize in a saline soil from central China: a 2‐year field experiment. Journal of the Science of Food and Agriculture 95(6): 1321-1327.
  32. Lehmann, J. Da. Silva, J. P. Steiner, C. Nehls, T. Zech, W. and Glaser, B. 2003. Nutrient availability and leaching in an archaeological anthrosol and a ferralsol of the central Amazon basin: fertilizer, manure and charcoal amendments. Plant and Soil 249:343–357.
  33. Lindsay, W.L. and Norvell, W.A. 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal 42: 421-428.
  34. Loppert, R.H. and Suarez D.L. 1996. Carbonate and gypsum. p. 437- 474. In; Klute, A. et al. (eds.) Methods of soil analysis. Part 3. 3rd ed. ASA and SSSA, Madison, WI.
  35. Loupassaki, M.H. Chartzoulakis, K.S. Digalaki, N.B. and Androulakis, I.I. 2002. Effects of salt stress on concentration of nitrogen, phosphorus, potassium, calcium, magnesium, and sodium in leaves, shoots, and roots of six olive cultivars. Journal of Plant Nutrition 25(11): 2457-2482.
  36. Marathe, A. Krishnan, V. Vinutha, T. Dahuja, A. Jolly, M. and Sachdev, A. 2018. Exploring the role of Inositol 1, 3, 4-trisphosphate 5/6 kinase-2 (GmITPK2) as a dehydration and salinity stress regulator in Glycine max (L.) Merr. through heterologous expression in E. coli. Plant Physiology and Biochemistry 123: 331-341.
  37. Nelson, D.W. and Sommers, L.E. 1996.Total carbon, organic carbon, and organic matter. p. 961-1010. In: Sparks, D.L., (ed), Methods of Soil Analysis part 3: Chemical methods. ASA and SSSA, Madison, WI.
  38. Olsen, S.R.  Cole, C.V. Watanabe, F.S. and Dean, L.A. 1954. Estimation of available phosphorous in soil by extraction with sodium bicarbonate. United States Department of Agriculture Circular No. 939.
  39. Patel, A. Khare, P. and Patra, D.D. 2017. Biochar Mitigates Salinity Stress in Plants. P. 153-182. In: Plant Adaptation Strategies in Changing Environment. Springer, Singapore.
  40. Preusch, P. L. Adler, P. R. Sikora, L. J. and Tworkoski, T. J. 2002. Nitrogen and phosphorus availability in composted and uncomposted poultry litter. Journal of Environmental Quality 31(6): 2051-2057.
  41. Qadir, M., Qureshi, A.S. Cheraghi, S.A.M. 2008. Extent and characterization of salt-affected soils in Iran and strategies for their amelioration and management. Land Degradation and Development 19: 214-227.
  42. Safavi, S. and Khajehpour, M.R. 2008. Effects of salinity on Na, K and Ca contents of borage (Borago officinalis L.) and echium (Echium amoenum Fisch. & Mey.). Research in Pharmaceutical Sciences 2(1): 23-27.
  43. Sheikhi, J. Ronaghi, A. 2012. Growth and macro and micronutrients concentration in spinach (Spinacia oleracea L.) as influenced by salinity and nitrogen rates. International Research Journal of Applied and Basic Sciences 3:770-777.
  44. Singh, B. Singh B.P. and Cowie A.L. 2010. Characterisation and evaluation of biochars for their application as a soil amendment. Australian Journal of Soil Research 48: 516-525.
  45. Summer, M.E. and Miller, W.P. 1996. Cation Exchange Capacity and Exchange Coefficient. p. 1201-1230. In: Sparks, D.L. (ed.). Methods of Soil Analysis. SSSA, Madison, WI, USA.
  46. Uchimiya, M. Bannon, D. I. and Wartelle, L.H. 2012: Retention of heavy metals by carboxyl functional groups of biochars in small arms range soil. Journal of Agricultural and Food Chemistry 60: 1798-1809.
  47. Unlukara, A. Kurunç, A. Kesmez, G.D. Yurtseven, E. and Suarez, D.L. 2010. Effects of salinity on eggplant (Solanum melongena L.) growth and evapotranspiration. Irrigation and Drainage, 59(2): 203-214.
  48. Yang, S. J. Zhang, Z. L. Xue, Y. X. Zhang, Z. F. and Shi, S. Y. 2014. Arbuscular mycorrhizal fungi increase salt tolerance of apple seedlings. Botanical Studies 55(1): 70.
  49. Zolfi-Bavariani, M. Ronaghi, A. Ghasemi-Fasaei, R. and Yasrebi, J. 2016. Influence of poultry manure–derived biochars on nutrients bioavailability and chemical properties of a calcareous soil. Archives of Agronomy and Soil Science 62(11): 1578-1591