مطالعه تنوع ژنتیکی، توانایی گره‌زایی و کارایی تثبیت نیتروژن باکتری‌های ریزوبیوم جداسازی شده از گره‌های یونجه

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی سابق دکتری دانشگاه تهران و استادیار دانشگاه محقق اردبیلی

2 دانشیار دانشگاه تهران

3 استادیار پژوهشکده بیوتکنولوژی کشاورزی ایران

4 دانشیار موسسه تحقیقات خاک و آب کشور

5 استادیار دانشگاه تهران

چکیده

تثبیت نیتروژن مولکولی توسط باکتری­های ریزوبیومی، منبع اصلی برای ورود پایدار نیتروژن مورد نیاز گیاهان به سیستم­های کشاورزی است. تثبیت زیستی مولکول نیتروژن در کشاورزی می­تواند به وسیله مایه­زنی گیاهان لگوم با باکتری­های ریزوبیومی دارای توانایی بالا در تثبیت این مولکول بهبود پیدا کند. آگاهی از تنوع زیستی جمعیت­های بومی این باکتری­ها برای طراحی تدابیر مایه­زنی موفق می­تواند مفید واقع شود. در این تحقیق تنوع زیستی، توانایی گره­زایی و کارایی تثبیت نیتروژن 48 باکتری ریزوبیوم جداسازی شده از گر­ه­های گیاه یونجه کشت شده در مناطق مختلف استان همدان مورد مطالعه قرار گرفت. نتایج بررسی تنوع ژنتیکی سویه­های مورد مطالعه با استفاده از تکنیک ITS-PCR-RFLP نشان داد که باکتری­های مورد بررسی دارای تنوع ژنتیکی قابل توجه بوده و در سطح شباهت 70 درصد به 4 گروه  III ,II ,Iو IV تقسیم­بندی شدند.نتایج آزمون گره­زایی نشان داد که اکثر سویه­ها دارای توانایی ایجاد گره در گیاه یونجه بودند، در حالیکه در اثر تلقیح این گیاه با سویه­های KH16، KH24، KH10، KH6، KH133 و KH193 گره­ای حاصل نشد. بر اساس نتایج حاصل از آزمون بررسی کارایی تثبیت نیتروژن سویه­های مورد مطالعه، این باکتری­ها به چهار دسته غیر مؤثر، نسبتاً مؤثر، مؤثر و خیلی مؤثر تقسیم­بندی شدند.

کلیدواژه‌ها


عنوان مقاله [English]

Genetic Diversity and Symbiotic Effectiveness of Rhizobia Isolated from Root Nodules of Medicago sativa L.

نویسندگان [English]

  • A. A. Soltani Toolarood 1
  • Hosseinali Alikhani 2
  • gholamreza Salehi Jouzani 3
  • H. Asadi Rahmani 4
  • K. Khavazi 4
  • Ahmad Ali Pourbabaee 5
1 Former PhD student of Tehran University and Assistant professor of University of Mohaghegh Ardabili
2 Associate professor, Tehran University
3 Assistant professor, Agricultural Biotechnology Research Institute of Iran
4 Assistant professor, Soil and Water Research Institute of Iran
5 Assistant professor, Tehran University
چکیده [English]

The symbiotic nitrogen fixation resulting from the rhizobia–legume interaction can act as a sustainable source of nitrogen in many agricultural systems. Better N2 fixation can be achieved by selecting superior rhizobia from native populations. Genetic characterization and biodiversity of the native rhizobia population can be useful for the selection of inoculant strains. In this study, the plant infection, symbiotic effectiveness, and genetic diversity of 48 rhizobia isolated from root nodules of Medicago sativa L., cultivated in different sites of Hamedan Province, was studied by restriction fragment length polymorphism (RFLP) analysis of PCR-amplified intergenic spacer (ITS). Analysis of the 16S-23S (ITS) fragment showed considerable diversity within these microsybionts. At the similarity of 70%, these rhizobia were clustered into 6 groups: I, II, III and IV. Plant infection test results showed that most strains formed nodules on the roots of host plant. No nodules were observed on the roots of plants inoculated with KH16, KH24, KH6, KH10, KH133, and KH193. According to the results of symbiotic effectiveness test, strains were divided into four groups: non effective, relatively effective, effective, and highly effective strains.

کلیدواژه‌ها [English]

  • Medicago sativa L
  • Biodiversity
  • Plant infection
  • Symbiotic effectiveness
  1. هادی کریمی: زراعت و اصلاح گیاهان علوفه­ای، انتشارات دانشگاه تهران، سال 1384.
  2. Andrade DS., Murphy PJ. and Giller KE. 2002. The Diversity of Phaseolus-nodulating rhizobial populations is altered by liming of acid soils planted with Phaseolus vulgaris L. in Brazil. Applied and Environmental Microbiology. 68: 4025–4034.
  3. Asadi Rahmani, H., Räsänen, L.A., Afshari, M. and Lindström, K. 2011. Genetic diversity and symbiotic effectiveness of rhizobia isolated from root nodules of Phaseolus vulgaris L. grown in soils of Iran. Applied Soil Ecology.
  4. Baele M., Baele P., Vaneechoutte M., Storms V., Butaye P., Devriese LA., Verschraegen G., Gillis M. and Haesebrouck F. 2000. Application of tRNA intergenic spacer PCR for identification of Enterococcus species. Journal of Clinical Microbiology. 38: 4201–4207.
  5. Bailly, X., Olivieri, I., Demita, S., Cleyet-Marel, J.C. and Bena, G. 2006. Recombination and selection shape the molecular diversity pattern of nitrogen-fixing Sinorhizobium sp. associated to Medicago. Molecular Ecology. 15: 2719–2734.
  6. Benromdhane S., Naser H., Samba-mbaye R., Neyra M. and Habib ghorbal M. 2005. Diversity of Acacia tortilis rhizobia revealed by PCR/RFLP on crushed root nodules in tunnsia. Annals Microbiology. 55: 249-258.
  7. Biondi EG., Pilli E., Giuntini E., Roumiantseva ML., Andronov EE., Onichtchouk OP., Kurchak ON., Simarov BV., Dzyubenko NI., Mengoni A. and Bazzicalupo M. 2003. Genetic relationship of Sinorhizobium meliloti and Sinorhizobium medicae strains isolated from Caucasian region. FEMS Microbiology Letter. 220: 207–213.
  8. Chen, W. X., Yan, G. H. and Li, J. L. 1988. Numerical taxonomic study of fast-growing soybean rhizobia and a proposal that Rhizobium fredii be assigned to Sinorhizobium gen. nov. InternationalJournal of Systematic Bacteriology. 38: 392–397.
  9. de Lajudie, P., Willems, A., Pot, B., Dewettinck, D., Maestrojuan, G., Neyra, M., Collins, M. D., Dreyfus, B., Kersters, K. and Gillis, M. 1994. Polyphasic taxonomy of rhizobia: emendation of the genus Sinorhizobium and description of Sinorhizobium meliloti comb.  nov., Sinorhizobium saheli sp. nov., and Sinorhizobium teranga sp. nov. InternationalJournal of Systematic Bacteriology. 44: 715–733.
  10. Diouf, A., de Lajudie, P., Neyra,M., Kersters, K., Gillis, M., Martı´nez-Romero, E. and Gueye, M. 2000. Polyphasic characterization of rhizobia that nodulate Phaseolus vulgaris in West Africa (Senegal and Gambia). Int International Journal of Systematic and Evolutionary Microbiology. 50:159-170. 
  11. Ferreira EM. and Marques JF. 1992. Selection of Portuguese Rhizobium leguminosarum bv. trifolii strains for production of legume inoculants. Plant Soil. 147: 151–158.
  12. Geniaux E., Laguerre G. and Amarger N. 1993. Comparison of geographically distant populations of Rhizobium isolated from root nodules of Phaseolus vulgaris . Molecular Ecology. 2: 195-302.
  13. Gurtler, V. and Stanisich, V. A. 1996. New approaches to typing and identification of bacteria using the 16S-23S rDNA spacer region. Microbiology. 142:3–16.
  14. Howieson JG. 1995. Characteristics of an ideotype acid tolerant pasture legume symbiosis in Mediterranean agriculture. Plant Soil. 171: 71–76.
  15. Huber I. and Selenska-Pobell S. 1994. Pulsed-field electrophoresis fingerprinting, genome size estimation and rrn loci number of Rhizobium galegae. Journal of Applied Bacterialogy. 77: 528-533.
  16. Jensen, M. A., Webster, J. A. and Straus, N. 1993. Rapid identification of the bacteria on the basis of polymerase chain reaction-amplified ribosomal DNA spacer polymorphisms. Applied and Environmental Microbiology. 59:945–952.
  17. Laguerre G., Mavingui P., Allard MR., Charnay MP., Louvrier P., Mazurier SI., Rigottier-Gois L. and Amarger N. 1996. Typing of rhizobia by PCR DNA fingerprinting and PCR-restriction fragment length polymorphism analysis of chromosomal and symbiotic gene regions: application to Rhizobium leguminosarum and its different biovars. Applied and Environmental Microbiology. 62: 2029–2036.
  18. Laguerre, G., Allard, M.R., Revoy, F. and Amarger, N. 1994. Rapid identification of rhizobia by restriction fragment length polymorphism analysis of PCR-amplified 16S rRNA genes. Applied and Environmental Microbiology. 60: 56–63.
  19. Langer, H., Kemanthi G, N., John G, H., Milko, J., and Fernando, B. 2008. Genetic diversity of Sinorhizobium meliloti associated with alfalfa in Chilean volcanic soils and their symbiotic effectiveness under acidic conditions. World Journal Microbiology Biotechnology. 24:301–308.
  20. Lin DX., Man CX., Wang ET. and Chen WX. 2007. Diverse rhizobia that nodulate two species of Kummerowia in China. Arch Microbiol. 188: 495–507.
  21. Merabet, C., Martens, M., Mahdhi, M., Zakhia, F., Sy, A., Le Roux, C., Domergue, O., Coopman, R., Bekki, A., Mars, M., Willems, A. and de Lajudie, P. 2010. Multilocus sequence analysis of root nodule isolates from Lotus arabicus (Senegal), Lotus creticus, Argyrolobium uniflorum and Medicago sativa (Tunisia) and description of Ensifer numidicus sp. nov. and Ensifer garamanticus sp. nov. International Journal of Systematic and Evolutionary Microbiology. 60: 664–674.
  22. Michaud R., Lehman WF. and Rumbaugh MD. 1987. World distribution and historical development, In Hanson AA., Barnes DK. , Hill RR. Alfalfa and alfalfa improvement. American Society of Agronomy, Madison, Wis. p. 25-91.
  23. Nick, G., de Lajudie, P., Eardly, B. D., Suomalainen, S., Paulin, L., Zhang, X., Gillis, M. and Lindstrom, K. 1999. Sinorhizobium arboris sp. nov. and Sinorhizobium kostiense sp. nov., isolated from leguminous trees in Sudan and Kenya. International Journal of Systematic Bacteriology. 49: 1359–1368.
  24. Rengel Z. 2002. Breeding for better symbiosis. Plant Soil. 245: 147–162.
  25. Rinco´ n-Rosales, R., Lloret, L., Ponce, E. and Martı´nez-Romero, E. 2009. Rhizobia with different symbiotic efficiencies nodulate Acaciella angustissima in Mexico, including Sinorhizobium chiapanecum sp. nov. which has common symbiotic genes with Sinorhizobium mexicanum. FEMS Microbiology Ecology. 67: 103–117.
  26. Rome, S., Fernandez, M. P., Brunel, B., Normand, P. and Cleyet-Marel, J.-C. 1996. Sinorhizobium medicae sp. nov., isolated from annual Medicago spp. International Journal of Systematic Bacteriology. 46: 972–980.
  27. Stewart FJ. and Cavanaugh CM. 2007. Intragenomic Variation and Evolution of the Internal Transcribed Spacer of the rRNA Operon in Bacteria. Journal of  Molecular Evolution. 65: 44- 67.
  28. Toledo, I., Lloret, L. and Martı´nez-Romero, E. 2003. Sinorhizobium americanus sp. nov., a new Sinorhizobium species nodulating native Acacia spp. in Mexico. Systematics and Applied Microbiology. 26: 54–64.
  29. Vincent JM. and Humphrey BA. 1970. Taxonomically significant group antigens in Rhizobium. J Gen Microbiology. 63: 379–382.
  30. Vinuesa, P., Silva, C., Lorite, M. J., Izaguirre-Mayoral, M. L., Bedmar, E. J. and Martı´nez-Romero, E. 2005. Molecular systematics of rhizobia based on maximum likelihood and Bayesian phylogenies inferred from rrs, atpD, recA and nifH sequences, and their use in the classification of Sesbania microsymbionts from Venezuelan wetlands. Systematics and Applied Microbiology. 28: 702–716.
  31. Wang H., Man CX., Wang ET. and Chen WX. 2009. Diversity of rhizobia and interactions among the host legumes and rhizobial genotypes in an agricultural-forestry ecosystem. Plant Soil. 314: 169–182.
  32. Wang, E. T., Tan, Z. Y., Willems, A., Ferna´ ndez-Lo´ pez, M., Reinhold-Hurek, B. and Martı´nez-Romero, E. 2002. Sinorhizobium morelense sp. nov., a Leucaena leucocephala-associated bacterium that is highly resistant to multiple antibiotics. Int InternationalJournal of Systematic Bacteriology. 52: 1687–1693.
  33. Wasike, V. W., Lesueur, D., Wachira, F. N., . Mungai, N. WL., Mumera, M., Sanginga, N., buru, H. N. M., Mugadi, D., Wango, P. and Vanlauwe, B. 2009. Genetic diversity of indigenous Bradyrhizobium nodulating promiscuous soybean [Glycine max (L) Merr.] varieties in Kenya: Impact of phosphorus and lime fertilization in two contrasting sites. Plant Soil. 322, 151–163.
  34. Wei, G. H., Wang, E. T., Tan, Z. Y., Zhu, M. E. and Chen, W. X. 2002. Rhizobium indigoferae sp. nov. and Sinorhizobium kummerowiae sp. nov., respectively isolated from Indigofera spp. and Kummerowia stipulacea. International Journal of Systematic and Evolutionary Microbiology. 52: 2231–2239.