اثر قارچ‌های میکوریز آربسکولار بر رشد و جذب عناصر غذایی پایه نارنج در شرایط تنش کم آبی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی سابق کارشناسی ارشد بخش علوم خاک‌‌،‌ دانشکده کشاورزی، دانشگاه شیراز

2 استادیار بخش علوم خاک‌، دانشکده کشاورزی، دانشگاه شیراز

چکیده

در مناطق خشک و نیمه خشک کمبود آب سبب کاهش تولیدات کشاورزی می‌شود‌. مرکبات کشور در سال‌های اخیر در پی خشکسالی‌های مستمر با کاهش تولید و افت سطح باغات مواجه است. قارچ‌های میکوریز آربسکولار با مکانیسم­های مانند افزایش جذب عناصر غذایی به کاهش اثرات کم آبی در گیاهان میزبان کمک می‌کند. در این پژوهش اثر قارچ گلوموس موسه‌ و گلوموس ورسیفرم بر رشد و جذب عناصر غذایی در پایه نارنج در یک آزمایش گلخانه‌ای در خاک استریل بررسی گردید. آزمایش به صورت فاکتوریل در قالب طرح پایه کاملاً تصادفی با سه فاکتور شامل قارچ میکور‌‌‌‌‌‌‌‌یز آربسکولار در سه سطح شامل گلوموس موسه‌ و گلوموس ورسیفرم وشاهد، کم آبی در 4 سطح (دور‌های آبیار‌ی 2، 4، 6 و 8 روز)و پایه نارنج در سه تکرار صورت گرفت. کم آبی میانگین وزن خشک ریشه و اندام هوایی و جذب عناصر غذایی اندام هوایی و ریشه (فسفر، نیتروژن، آهن، مس و منگنز) را کاهش، در حالی جذب روی اندام هوایی و ریشه را افزایش داد.میزان وزن خشک ریشه و اندام هوایی‌، جذب فسفر، نیتروژن، آهن، منگنز، مس و روی در اندام هوایی پایه نارنج تلقیح شده با قارچ میکوریزی نسبت به پایه غیرمیکوریزی در شرایط تنش کم آبی، بالاتر بود. درصد کلنیزاسیون ریشه در تیمارهای دارای قارچ بیشتر از تیمارهای بدون قارچ بود. در پایه‌ نارنج تلقیح شده با قارچ میکوریزی با افزایش تنش کم آبی درصد کلنیزاسیون ریشه کاهش یافت. 

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Arbuscular Mycorrhizal Fungi on Growth Parameters and Nutrients Uptake of Sour Orange (Citrus aurantium) under Water Stress Conditions

نویسندگان [English]

  • Z. Paymaneh 1
  • mehdi zarei 2
1 Former M Sc Student, Shiraz University. College of Agriculture. Soil Science Department
2 Assistant Professor, Shiraz University. College of Agriculture. Soil Science Department
چکیده [English]

Drought stress can cause yield decrease of many crops in many arid and semiarid regions of the world. Recent droughts have decreased yield of citrus in the country. Arbuscular mycorrhiza employs the mechanisms such as increased nutrients uptake to alleviate the effects of water stress in host plants. The effects of arbuscular mycorrhizal fungi, Glomus mosseae and Glomus versiforme on growth and nutrients uptake by sour orange (Citrus aurantium) were assessed in a sterilized soil in a greenhouse experiment. The experiment had a completely randomized design in a factorial arrangement with two factors and three replications for each treatment. The factors were mycorrhizal treatments at three levels (inoculation with Glomus mosseae, Glomus versiforme, and the control) and water stress at four levels (irrigation intervals of 2, 4, 6 and 8 days). Water stress decreased shoot and root dry weights and nutrients uptake (P, N, Fe, Cu, Mn), but increased Zn content in the shoots and roots. Shoot and root dry weights and contents of P, N, K, Cu, Mn and Zn were more in mycorrhizal plants than in the control plants. Root colonization was higher in mycorrhizal than nonmycorrhizal plants. In mycorrhizal citrus rootstock, root colonization decreased as drought stress levels increased.

کلیدواژه‌ها [English]

  • Glomus mosseae
  • Glomus versiforme
  • Citrus
  • Drought stress
  1. امامی، ع. 1375. روش­های تجزیه گیاه. جلد اول، نشر آموزش کشاورزی، کرج، 128 صفحه.
  2. جیحونی، م. 1390‌. اصول تغذیه درختان مرکبات ایران. شرکت کشاورزی حاصل نوین، 44 صفحه.
  3. رادنیا، ح. 1375. پایه‌های درختان میوه. نشر آموزش کشاورزی کرج، 673 صفحه.
  4. زنگنه، س.، علیان، ی.م.، نجفی نیا،م.، کرمپور، ف. و قلعه دزدانی، ح.ا. 1384. معرفی گونه­های جدیدی از قارچ­های آربوسکولار-میکوریزا از ریزوسفر مرکبات ایران. رستنیها 6: 32-77.
  5. Al Karaki, G.N. and A. Al-Raddad. 1997. Effects of arbuscular mycorrhizal fungi and drought stress on growth and nutrient uptake of two wheat genotypes differing in drought resistance. Mycorrhiza 7:‌83–88.
  6. Alcamo, J., T. Henrichs and T. R.osch. 2000. World water in 2025-global modeling and scenario analysis for the world commission on water for the 21st century. center for environmental systems research, University of Kassel, Kurt Wolters Strasse 3, 34109 Kassel, Germany.
  7. Auge R. M. 2001. Water relations, drought and vesicular–arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42.
  8. Bremner, J. M. 1996. Nitrogen-total. In: Methods of Soil Analysis. Part 3. Chemical Methods. Sparks, D. L. (Ed.). Soil Science Society of America. and American Society of Agronomy,  Madison, WI. pp. 1085–1121.
  9. Davies, F. S., and L. G. Albrigo. 1994. Citrus. In: Atherton, J., A. Rees, (Eds.), Crop Production Science in Horticulture, vol. 2. CAB International, Wallingford, UK.
  10. Faber, B. A., R. J. Zakoski, R. G. Burau and K. Uriu. 1990. Zinc uptake by corn as affected by vesicular-arbuscular mycorrhizae. Plant and Soil 129:121–130.
  11. Graham, J. H. and J. P. Syvertsen. 1985. Host determinants of mycorrhizal dependency of citrus rootstock seedlings. New Phytologist 101:667-676
  12. Haghighatnia H., H.A. Nadian and F. Rejali 2011. Effects of mycorrhizal colonization on growth, nutrients uptake and some other characteristics of Citrus volkameriana rootstock under drought stress. World Applied Sciences Journal 13 (5):1077-1084.
  13. Hutton, R. J. 2004. Effects of cultural management and different irrigation regimes on tree growth, production, fruit quality and water relations of sweet orange C. sinensis (L.) Osbeck. PhD thesis, University of Sydney, Sydney, Australia.
  14. Johnson, C. R. and R. L. Hummel. 1985. Influence of mycorrhizae and drought stress on growth of Poncirus × Citrus seedlings. Horticultural Science 20:754 –5.
  15. Kormanik, P. P. and A. C. McGraw. 1982. Quantification of vesicular-arbuscular mycorrhizae in plant root. In:Methods and principles of mycorrhizal reseach, ed. By Schenk N .C, The American Phytopathological Society, St. Paul 37-45.
  16. Leon, V. and Kochain. 1991. Mechanisms of micronutrient uptake and translocation in plant. Pp. 229-285. In: Mortvelt, J. J., F. R. Cox, L. M. Shuman, and R. M. Welch (eds). Micronutrient in Agriculture. 2nd ed. Soil Science Society of America. Madison, Wl.
  17. Lopez-Bucio, J., A. Cruz-Ramirez. L. Herrera-Estrella. 2003. The role of nutrient availability in regulating root architecture. Current Opinion in Plant Biology 6:280–287.
  18. Nadian, H., S. E. Smith, A. M. Alston and R. S. Murray. 1996. The effect of soil compaction on growth and P uptake by Trifolium subterraneum: interactions with mycorrhizal colonisation. Plant and Soil 182:39-49.
  19. Perez-Perez, J.M., 2007. Hormone signaling and root development: an update on the latest Arabidopsis thaliana research. Funct. Plant Biolology 34:163–171.
  20. Porcel, R., J. M. Barea, J. M. Ruiz-Lozano. 2003. Antioxidant activities in mycorrhizal soybean plants under drought stress and their possible relationship to the process of nodule senescence. New Phytologist. 157: 135–43.
  21. Ruiz-Lozano, J. M. and R. Azcon. 1995. Hyphal contribution to water uptake in mycorrhizal plants as affected by the fungal species and water status. Plant Physiology 95:472-478.
  22. Sena, J. O. A., C. A. Labate and E. J. B. N. Cardoso. 2002. Micronutrient accumulation in mycorrhizal citrus under different phosphorus regimes. Acta Scientiarum 24:1265–1268.
  23. Sepaskhah, A. R. and N.Yarami.  2009.   Interaction effects of irrigation regime and salinity on flower yield and growth of saffron. Journal of Horticultural Science and Biotechnology 84(2): 216-222.
  24. Smakthin, V., C. Revenga and P. Doll. 2004. Taking into Account Environmental Water Requirements in Globalscale Water Resources Assessments. Comprehensive Asessment of Water Management in Agriculture Research Report 2, IWMI, Colombo, Sri Lanka.
  25. Smith, S. E. and D. J. Read. 2008. Mycorrhizal symbiosis. Academic Press, London.
  26. Spiegel-Roy, P., E. E. Goldschmidt. 1996. Biology of Citrus. Cambridge University Press.
  27. Suri, V. K., A. K. Choudhary, C. Girish, T. S. Verma, M. K. Gupta and N. Dutt. 2011. Improving phosphorus use through co-inoculation of vesicular arbuscular mycorrhizal fungi and phosphate-solubilizing bacteria in maize in an acidic Alfisol. Communications in Soil Science and Plant Analysis 42 (18): 2265-2273.
  28. Taiz, L. and E. Zeiger. 1998. Plant physiology (2nd ed.) Sinauer Associates. Inc. Publisher. Sunderland MA Chusetts. 757p.
  29. Troehza loynachan, T. E. 2003. Endomycorrhizal fungi survival in continuous corn, soybean and fallow. Agronomy Journal. 95(1): 224-230.
  30. Wang, M. Y., R. X. Xia, L. M. Hu, T. Dong and Q. S.Wu. 2007. Arbuscular mycorrhizal fungi alleviate iron deficient chlorosis in Poncirus trifoliata L. Raf under calcium bicarbonate stress. The Journal of Horticultural Science and Biotechnology 82(5):776-780.
  31. Wu, Q. S., Y. N. Zou, R. X. Xia, and M. Y. Wang. 2007. Five Glomus species affect water relations of Citrus tangerine during drought stress. Botanical Studies 48:147-154.
  32. Wu, Q. S. and R. X. Xia and Y. N. Zou. 2006. Reactive oxygen metabolism in non-mycorrhizal citrus (Poncirus trifoliata) seedlings subjected to water stress. Journal of Plant Physiology 163:1101-1110.
  33. Wu, Q. S. and Y .N. Zou. 2009. Mycorrhizal Influence on nutrient uptake of citrus exposed to drought stress. The Philippine Agricultural Scientist 92‌(1):‌33-38.
  34. Wu, Q. S., R. X. Xia and Y. N. Zou. 2008. Improved soil structure and citrus growth after inoculation with three arbuscular mycorrhizal fungi under drought stress. European Journal of Soil Biology 44(1):122-128.
  35. Wu, Q. S., R. X. Xia and Z. J. Hu. 2005. Effects of arbuscular mycorrhiza on drought tolerance of Poncirus trifoliata. Chinese Journal of Applied Ecology 16:459–63.
  36. Wu, Q. S., Y. N. Zou, R. X Xia and M. Y. Wangi. 2009. Mycorrhiza has a direct effect on reactive oxygen metabolism of drought-stressed citrus. Soil, Environmental and Atmospheric Sciences 55(10):436–442.
  37. Yao, Q., H. H. Zhu, J. Z. Chen. 2005. Growth responses and endogenous IAA and iPAs changes of litchi (Litchi chinensis Sonn.) seedlings induced by arbuscular mycorrhizal fungal inoculation. Horticultural Science 105(1):145–151.