بررسی تأثیر قارچ ریشه های آربوسکولار همزیست با گونه درختی محلب (CerasusmahalebL. Mill.) بر زیست پالایی سرب

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجو دکتری، گروه جنگلداری، دانشکده منابع طبیعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری

2 دانشیار موسسه تحقیقات خاک و آب، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

3 دانشیار، گروه جنگلداری، دانشکده منابع طبیعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری

4 استادیار، بخش منابع طبیعی، مرکز تحقیقات کشاورزی و منابع طبیعی اصفهان، سازمان تحقیقات، آموزش و ترویج کشاورزی اصفهان، ایران

5 استادیار، بخش خاک و آب، مرکز تحقیقات کشاورزی و منابع طبیعی اصفهان، سازمان تحقیقات، آموزش و ترویج کشاورزی اصفهان، ایران

چکیده

افزایش غلظت فلزات سنگین در خاک یکی از نتایج فعالیت­های صنعتی بشری است. از روش­های پالایش زیستی این نوع آلاینده­ها می توان به استفاده از همزیستی قارچ‏های میکوریزی اشاره نمود. تحقیق حاضر با هدف بررسی پتانسیل قارچ­های میکوریزی در زیست پالایی سرب توسط محلب (Cerasus mahaleb L. Mill.) در سطوح مختلف آلودگی خاک با فلز سنگین سرب و تلقیح با قارچ های میکوریزی مورد بررسی قرار گرفت. تیمارها شامل سه سطح تلقیح با قارچ­های میکوریزی و سه سطح آلودگی خاک به فلز سنگین سرب در چهار تکرار بود. نتایج نشان داد با افزایش آلودگی خاک به سرب درصد کلنیزاسیون قارچ­های میکوریزی کاهش یافت. همچنین در بالاترین سطح آلودگی خاک تیمار ترکیبی قارچ میکوریزی بیشترین درصد همزیستی با ریشه گیاه محلب را به خود اختصاص داد. فاکتور انتقال (TF) فلز سرب در ساقه و برگ در تیمار خاک آلوده شدید نسبت به خاک کم آلوده افزایش یافته و تیمار ترکیبی قارچ میکوریزی در انتقال فلز سرب به برگ و ساقه محلب عملکرد به نسبت بهتری از خود نشان داد. بالاترین مقادیر مربوط به هر دو فاکتور انتقال زیستی (BCF) (تجمع در ریشه) و ضریب تجمع زیستی (BAC) (انتقال به اندام هوایی) در تیمار خاک آلوده شدید بیشترین مقدار بود، همچنین تیمار ترکیبی قارچ میکوریزی بهترین عملکرد را در افزایش دو فاکتور ذکر شده داشت. مقدار فاکتور انتقال زیستی ((BCF از ضریب تجمع زیستی (BAC) و فاکتور انتقال (TF) بیشتر و نزدیک به یک بود (مقدار محاسبه شده حدود ۹ /0 بود ).با توجه به نتایج حاصل، نهال­های گونه محلب اگرچه دارای توانایی انباشت فلزات سرب در ریشه و انتقال آن به اندام‏های هوایی را نشان دادند، لیکن تثبیت در ریشه را با کارایی بسیار بهتر و مؤثرتری انجام داده و بدین صورت توانسته‏اند در همزیستی با قارچ های میکوریزی در کاهش انتقال عنصر سنگین در خاک مؤثر عمل نمایند.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Arbuscular Mycorrhizal Fungi on Lead Bioremediation by Cerasusmahaleb L. Mill.

نویسندگان [English]

  • Bahman Zamani Kebrabadi 1
  • F. Rejali 2
  • M. Hodjati 3
  • M. Esmaeili Sharif 4
  • H. R. Rahmani 5
1 Ph.D. Student, Department of Forestry, Faculty of Natural Resources, Sari Agricultural Sciences and Natural Resource University
2 Associate Professor, Soil and Water Research Institute, Agricultural, Research, Education and Extension Organization, Karaj, Iran
3 Associate Professor, Department of Forestry, Faculty of Natural Resources, Sari Agricultural Sciences and Natural Resource University
4 Assistant professor, Division of Natural Resources, Isfahan Agricultural and Natural Resources, Agricultural, Research, Education and Extension Organization, Isfahan, Iran
5 Assistant professor, Division of Soil and Water, Isfahan Agricultural and Natural Resources, Agricultural, Research, Education and Extension Organization, Isfahan, Iran
چکیده [English]

One of the most important results of human industrial activities is the increased concentration of heavy metals in the soil. Application of mycorrhizal symbiosis is one of the bioremediation methods of heavy metals contaminated soils. The purpose of this study was to investigate the potential of mycorrhizal fungi in lead phytoremediation by Cerasus mahaleb in soil contaminated with different levels of lead. The treatments were three levels of mycorrhizal fungi and three levels of soil contaminated with lead in four replications. The results showed that the percentage of root colonization decreased by increasing soil contamination with lead. Also, in the highest level of soil contamination, the mixed mycorrhizal treatment had the highest percentage of root colonization. The transfer factor (TF) of lead in stems and leaves in the soil with high contamination was more than low contamination. Mixed mycorrhizal treatmentshowed the highest effect in lead transfer to leaf and stem. The highest bioconcentration factor (BCF) and bioaccumulation coefficient (BAC) were related to soil with high contamination. Also, the mixed mycorrhizal treatment had the best performance in increasing BCF and BAC. The amount of BCF was greater than BAC and TF and was close to one (0.9). Although  C. mahaleb seedlings could accumulate lead in roots and transfer it to shoot, they effectively stabilized lead in root and thus decreased lead translocation from soil to plant shoot.

کلیدواژه‌ها [English]

  • Contaminated Soil
  • Lead
  • Transfer Factor
  1. آرمند ن.، متینی زاده م.، ا. شیروانی ا.، و خوشنویس م. (1394). اثر تلقیح قارچ‏های میکوریزی بر رشد نونهال‏های محلب در شرایط گلخانه‏ای. تحقیقات جنگل و صنوبر، 24 (4): 664-656.
  2. خداوردی لو، ح. ۱۳۸۵. مدل سازی پالایش سبز خاک های آلوده به کادمیم و سرب. رساله دکتری خاکشناسی. دانشکده کشاورزی. دانشگاه تربیت مدرس. 131 صفحه.
  3. داوری، م.۱۳۸۸. مدل سازی پالایش سبز خاک­های آلوده با دو آلاینده نیکل و کادمیم. رساله دکتری خاکشناسی، دانشکده کشاورزی، دانشگاه تربیت مدرس. 149 صفحه.
  4. رضوانی، م.، زعفریان، ف. و قلیزاده، ع.، 1391. جذب سرب و عناصر غذایی به وسیله گیاه چمن شور تحت اثر سطوح مختلف سرب در خاک. نشریه دانش آب و خاک، جلد 22(3): 86-73.
  5. رفعتی، م.، خراسانی ن.، مراقبی، ف.، شیروانی، ا. ۱۳۹۱. توانایی گونه های توت سفید (Morus alba) و سپیدار
    (Populus alba) در تثبیت و برداشت فلزات سنگین، نشریه محیط زیست طبیعی، مجله منابع طبیعی ایران، ۶۵: ۱۹۱-۱۸۱.
  6. زمانی، ب، حجتی، م، رجالی، ف، اسماعیلی، م و رحمانی،ح، ر. 1399. شناسایی و بررسی اثرات قارچ­های میکوریز آربوسکولار مقاوم به سرب و روی بر ویژگی های مورفولوژیکی گونه محلب Cerusus mahaleb L. Mill مجله پژوهش و توسعه جنگل ( در نوبت چاپ)
  7. عباسی، ه. پورمجیدیان، م. ر.، حجتی، س. م. و فلاح، ا.، 1395. مقایسه مقاومت نهال­های یکساله شیردار (AcercappadocicumGled.)و ون (FraxinusexcelsiorL.) تحت خاک­های آلوده به فلز سنگین سرب. نشریه فیزیولوژی محیطی گیاهی، 11 (42): 12-1.
  8. Arriagada C.A., Herrera M.A., Ocampo J.A., 2005. Contribution of arbuscular mycorrhizal and saprobe fungi to the tolerance of Eucalyptus globulus to Pb. Water, Air, and Soil Pollution, 166: 31-47.
  9. Baker, A. J. M., Reeves, R. D. and Hajar, A. S. M. (1994) Heavy metals accumulation and Tolerance British populations of the metalophyte Thlaspi caerulescens j. & C. presl (Brassicaceae). New Phytologist 127: 61-68.
  10. Baum C. Hrynkiewicz K., Leinweber P., Meissner R., 2006. Heavy-metal mobilization and uptake by mycorrhizal and nonmycorrhizal willows (Salix X dasyclados). Journal of Plant Nutrition and Soil Science, 169: 516-522.
  11. Bierman, B. and R. G. Linderman.1980. Quantifying vesicular – arbuscular mycorrhizae: a proposed method towards standardization. New Phytol. 87:63 – 67.
  12. Bissonnette L., St-Amaud M., Labrecque M., 2010. Phytoextraction of heavy metals by two Salicaceae clones in symbiosis with arbuscular mycorrhizal fungi during the second year of a field trial. Plant and Soil, 332:55-67.
  13. Bojarczuk K. Kieliszewska-Rokicka B., 2010. Effect of ectomycorrhiza on Cu and Pb accumulation in leaves and roots of silver birch (Betula pendula Roth.) seedlings grown in metal-contaminated soil. Water, Air, and Soil Pollution, 207: 227-240.
  14. Borišev M., Pajević S., Nikolić N., Pilipović A., Krstić B., Orlović S., 2009. Phytoextraction of Cd, Ni, and Pb using four willow clones (Salix spp.). Polish Journal of Environmental Studies, 18:553-561.
  15. Chaney R.L., 1983. Plant uptake of inorganic waste constituents. In Land Treatment of Hazadous Wastes. Edited by Parr JF, Marsh PD. Kla JM. Park Ridge, NJ: Noyes Data Corporation: 50-76.
  16. Chao, C. C., and Y. P. Wang. 1990. Effects of heavy metals on the infection of vesicular arbuscular mycorrhizae and the growth of maize. Journal of Agriculture Association, 152: 34-45.
  17. Chao, C. C., and Y. P. Wang. 1990. Effects of heavy metals on the infection of vesicular arbuscular mycorrhizae and the growth of maize. Journal of Agriculture Association, 152: 34-45
  18. Chen X., Wu C., Tang J., Hu S., 2005. Arbuscular mycorrhizae enhance metal lead uptake and growth of host plants under a sand culture experiment. Chemosphere, 60: 665-671.
  19. Cicatelli A., Lingua G., Todeschini V., Biondi S., Torrigiani P. Castiglione S, 2010, Arbuscular mycorrhizal fungi restore normal growth in a white poplar clone grown on heavy metal-contaminated soil, and this is associated with upregulation of foliar metallothionein and polyamine biosynthetic gene expression. Annals of Botany, 106: 791-802
  20. Dai, Hui-Ping, Shan, Chan-Juan, Jia, Genliang, Lu, Chao, Yang, Tu-Xi and Wei, An-Zhi (2013) “Cadmium detoxification in Populus × canescens”, Turkish Journal of Botany, No. 37, pp. 950-955.
  21. Di Baccio D., Tognetti R., Sebastiani L., Vitagliano C., 2003. Responses of Populus deltoides x Populus nigra (Populus x euramericana) clone 1-214 to high zinc concentrations. New Phytologist, 159: 443-452.
  22. Dickson, A., Leaf, A.L. and Hosner, J.F., 1960. Quality appraisal of white spruce and white pineseedling stock in nurseries. For. Chronicle. 36:10–13.
  23. Fontem Lum, A., E.S.A. Ngwa, D. Chikoye & C.E. Suh, 2014. Phytoremediation Potential of Weeds in Heavy Metal Contaminated Soils of the Bassa Industrial Zone of Douala,Cameroon. International Journal of Phytoremediation, 16:302–319.
  24. Gaur A., Adholeya A., 2004. Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal-contaminated soils. Current Science, 86: 528-534.
  25. Gildon, A., and P. B. Tikner. 1983. Interaction of vesicular arbuscular mycorrhizal infection and heavy metals in plants. The effect of heavy metals on the development of vesicular arbuscular mycorrhizas. New Phytologist, 95: 247-261.
  26. Giovannetti, M. and B. Mosse. 1980. An evaluation of techniques to measure vesicular- arbuscular infection in roots. New Phytol. 84: 489-500.
  27. Joner EJ and Leyval C, 2001. Time course of heavy metal uptake in maize and clover as affected by root density and different mycorrhizal inoculation regimes. Biol Fert Soils 33: 351-357.
  28. Kanwal, Sadia, Bano, Asma and Malik, Riffat-Naseem (2015) “Effects of arbuscular mycorrhizal fungi on wheat growth, physiology, nutrition and cadmium uptake under increasing cadmium stress”, International Journal of Agronomy and Agricultural Research, No. 7(5), pp. 30-42.
  29. Kormanik, P. P. and A. C. McGraw. 1982. Quantification of Vesicular-arbuscular
  30. ycorrhizae in Plant Roots. In Methods and Principles of Mycorrhizal Research. Ed. N.C. Schenck. The American Phytopathological Society. pp. 37-36.
  31. Lingua G. Franchin C., Todeschini V., Castiglione S., Biondi S., Burlando B., Parravicini V., Torrigiani P., Berta G., 2008. Arbuscular mycorrhizal fungi differentially affect the response to high zinc concentrations of two registered poplar clones. Environmental Pollution, 153: 137-147.
  32. Lingua G., Bona E., Todeschini V., Cattaneo C., Marsano F. Berta G., Cavaletto M., 2012. Effects of Heavy Metals and Arbuscular Mycorrhiza on the Leaf Proteome of a Selected Poplar Clone: A Time Course Analysis. PLOS ONE, 7: e38662
  33. Li, H., Li, X., Dou, Z., Zhang, J. and Wang, C. 2012. Earthworm (Aporrectodeatrapezoides)–mycorrhiza (F.intraradices) interaction and nitrogen and phosphorusuptake by maize. Biology and Fertility of Soils, 48 (1), pp.75-85.
  34. Motesharezadeh, B. & Gh.R. Savaghebi-Firoozabadi, 2010. Bioaccumulation and phyto-translocation of Nickel by Medicago sativa in a calcareous soil of Iran, Desert, 15: 61-69.
  35. Oudeh M., Khan M., Scullion J., 2002. Plant accumulation of potentially toxic elements in sewage sludge as affected by soil organic matter level and mycorrhizal fungi. Environmental Pollution, 116: 293-300.
  36. Pallara G., Todeschini V., Lingua G., Camussi A., Racchi ML, 2013. Transcript analysis of stress defence genes in a white poplar clone inoculated with the arbuscular mycorrhizal fungus F.mosseae and grown on a polluted soil. Plant Physiology and Biochemistry, 63: 131-139.
  37. Phillips, S.M. and U.S. Hayman. 1970. Improved procedures for clearing roots and staining parasitic and vesiculararbuscular mycorrhizal for rapid assessment of infection. Trans. Brit. Mycol. Soc. 55: 158-161.
  38. Pulford, LD., Dickinson, N.M., 2005. Phytoremediation technologies using trees. In: Prassad MNV, Naidu R [eds.), Trace elements in the environment, 375-395. CRC Press, New York.
  39. Ryan, J. & A. Rashid, 2001. Soil and Plant Analysis Laboratory Manual. Second Edition, Available from ICARDA, Aleppo, Syria, 172 pp.
  40. Samani Majd, S., Sabeti, A. and Afiouni, M. 2007. Soil pollution of urban roadsides to lead and cadmium. Journal of Environmental studies, 33(43): 1-10.
  41. Sankar Ganesh K., Sundaramoorthy P., Chidambaram ALA., 2006. Chromium toxicity effect on blackgram, soybean and paddy, Pollution Research, 25: 257-261
  42. Sell J., Kayser A., Schulin R., Brunner I., 2005. Contribution of ectomycorrhizal fungi to cadmium uptake of poplars and willows from a heavily polluted soil. Plant and Soil. 277: 245-253.
  43. Sharma, P., and R. S. H. Dubey. 2005. Lead toxicity in Plants. Plant Physiology, 17: 35–52.
  44. Sposito, G., Lund, L.J., and Chang, A.C. 1982. Trace metal chemistry in arid-zone field soils amended with sewage sludge: I. Fractionation of Ni, Cu, Zn, Cd and Pb in solid phases. Soil Sci. Soc. Am. J. 46: 260-264
  45. Todeschini V., Franchin C., Castiglione S. 2007. Responses to copper of two registered poplar clones inoculated or not with arbuscular mycorrhizal fungi. Caryologia, 60: 146-155.
  46. Todeschini V., Franchin C., Castiglione S. 2007. Responses to copper of two registered poplar clones inoculated or not with arbuscular mycorrhizal fungi. Caryologia, 60: 146-155.
  47. Turnau K, 1998. Heavy metal content and localization in mycorrhizal Euphorbia cyparissias from zinc wastes in southern Poland. Acta Societatis Botanicorum Poloniae, 67: 105-113.
  48. US EPA., 1992. Method B11, Method 1311. http://www.caslab.com/EPA-Method-1311/.
  49. Vogel-Mikus, K., P. Pongrac, P. Kump, M. Necemer, and M. Regvar. 2006. Colonisation of a Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen with indigenous arbuscular mycorrhizal fungal mixture induces changes in heavy metal and nutrient uptake. Environmental Pollution, 139: 362-371.
  50. Yizong, H., H.U. Ying & L.I.U. Yunxia, 2009. Combined toxicity of copper and cadmium to six rice genotypes (Oryza sativa L.), Journal of Environmental Sciences, 21: 647-653.
  51. Zacchini M., Pietrini F., Mugnozza G.S., Iori V., Pietrosanti L, Massacci A., 2009. Metal tolerance, accumulation and translocation in poplar and willow clones treated with cadmium in hydroponics. Water, Air, and Soil Pollution, 197: 23-34.