تاثیر کاربرد باکتری سودوموناس بر رشد گندم و برخی ویژگی‌های بیولوژیک یک خاک متاثر از شوری و غلظت‌های کادمیوم

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی سابق کارشناسی ارشد دانشگاه شهید چمران اهواز

2 استادیار دانشگاه شهید چمران اهواز

3 دانشیار دانشگاه شهید چمران اهواز

چکیده

با توجه به مشکلات روزافزون شوری و فلزات سنگین در خاک‌های کشاورزی، این پژوهش به منظور بررسی مایه‌زنی با باکتری محرک رشد بر کاهش تنش شوری و کادمیوم در رشد گیاه گندم رقم چمران طرح‌ریزی گردید. پژوهش به صورت فاکتوریل با سه عامل شوری (3 و 10 دسی‌زیمنس بر متر)، کادمیوم (صفر، 25 و 50 میلی‌گرم بر کیلوگرم) و باکتری سودوموناس (مایه‌زنی با باکتری و بدون باکتری) در قالب طرح کاملاً تصادفی در سه تکرار انجام شد. پس از برداشت گیاه، اندازه‌گیری برخی ویژگی‌های بیولوژیک خاک (تنفس و زیتوده میکروبی خاک) و برخی ویژگی‌های گیاه (وزن خشک گیاه و غلظت کادمیوم، کلسیم و منیزیم در اندام‌هوایی و ریشه) صورت گرفت. نتایج نشان داد تنفس پایه (mg CO2 100g-1day-1 6/14)، تنفس برانگیخته (mg CO2 100g-1day-1 2/93)، کربن زیتوده میکروبی ( mg C 100g-14/13)، وزن خشک اندام‌هوایی و ریشه (به ترتیب 65/7 و30/2 گرم بر گلدان)، غلظت کلسیم اندام‌‌هوایی و ریشه (به ترتیب12/3 و92/5 میلی‌گرم بر کیلوگرم) و غلظت منیزیم اندام‌‌هوایی و ریشه (به ترتیب16/3 و75/6 میلی‌گرم بر کیلوگرم) با افزایش تنش شوری و کادمیوم کاهش یافته اما مایه‌زنی باکتری سبب افزایش این ویژگی‌ها نسبت به شرایط بدون مایه‌زنی شد. غلظت کادمیوم اندام‌هوایی و ریشه (به ترتیب 63/1 و 13/7 میلی‌گرم بر کیلوگرم) با افزایش تنش شوری و کادمیوم افزایش یافته اما مایه‌زنی باکتری سبب کاهش آن نسبت به شرایط بدون مایه‌زنی شد. لذا استفاده از باکتری‌های محرک رشد در خاک‌های با تنش‌های محیطی برای کاهش اثرات تنش‌ها و رشد بهتر و به ویژه سلامت بیشتر گیاه (غلظت کمتر فلز سنگین) و همچنین در بهبود وضعیت اکوسیستم توصیه می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The effect of inoculation with pseudomonas on wheat growth and some biological properties of a soil with Cd and salinity stresses

نویسندگان [English]

  • Ozra Shavalikohshori 1
  • Roya Zalaghi 2
  • Karim Sorkheh 2
  • Naeimeh Enayatizamir 3
1 Former student of MS of Shahid Chamran University of Ahvaz
2 Assistant professor, Shahid Chamran University of Ahvaz
3 Associate professor, Shahid Chamran University of Ahvaz
چکیده [English]

Due to the problems of salinity and heavy metals in agricultural soils, this study was designed to evaluate the effects of inoculation of wheat (Chamran cultivar) with plant growth promoting bacteria on the reduction the effects of salinity and cadmium stresses. Experiment was designed as factorial arrangement with three factors including salinity (3 and 10 dS m-1), cadmium (0, 25 and 50 mg kg-1) and Pseudomonas bacteria (bacterial inoculated and non-inoculated) in a completely randomised design with three replications. After harvesting, some soil biological properties (soil respiration and soil microbial biomass) and some plant properties (dry weights and Ca, Mg, and Cd concentrations in plant shoot and root tissues) were measured. The results showed that basal respiration (14.6 mg CO2 100g-1 day-1), substrate induced respiration (93.2 mg CO2 100g-1 day-1), soil microbial biomass (13.4 mg 100g-1), dry weights of shoot and root (7.65 and 2.30 mg pot-1 respectivily), Ca concentration of shoot and root (3.12 and 5.92 mg kg-1 respectivily), and Mg concentration of shoot and root (3.16 and 6.75 mg kg-1 respectivily) decreased with increase in salinity and cadmium levels. Inoculation of Pseudomonas resulted in increase in these properties compare to non-inoculated treatments. Cd concentration of shoot and root (1.63 and 7.13 mg kg-1 respectivily) increased with increase in salinity and cadmium levels. Inoculation of Pseudomonas resulted in decrease in this property compare to non-inoculated treatments. Therefore, the use of growth promoting bacteria in soil with environmental stresses can be effective in reducing the effects of stress and in better plant growth, plant health (lower concentration of heavy metal), and also in improving ecosystem status.

کلیدواژه‌ها [English]

  • Heavy metal
  • Microbial biomass carbon
  • Plant growth promoting bacteria
  • Soil microbial respiration
  1. ثواقبی، غ.ر. اردلان، م. و ملکوتی، م. ج. 1381. اثر مصرف توأم کادمیوم و روی در خاک آهکی بر پاسخ‌های گیاه گندم. مجله علوم کشاورزی ایران. 33 (2): 341-333.
  2. جعفری، ص. چرم، م. عنایتی ضمیر، ن. و معتمدی، ح. 1391. بررسی تأثیر باسیلوس سابتلیس و کورینه باکترینه باکتریوم گلوتامیکوم بر برخی شاخص‌های میکروبی خاک در سطح شوری مختلف. مهندسی زراعی (مجله علمی کشاورزی). 35 (2): 16-1.
  3. همایون، س. لکزیان، ا، حقنیا ،غ. ح. و خراسانی، ر. 1394. تأثیر باکتری‌های ریزوبیوم بر غلظت K، Ca وNa  (Triticum aestivum L.) در خاک‌های شور. 7 (20): 147-155 .
  4. علومی، ح. 1382. اثر کادمیوم بر برخی پارامترهای رشد و القاء تنش اکسیداتیو در گیاه کلزا. پایان‌نامه دوره کارشناسی ارشد، بخش زیست شناسی دانشگاه شهید باهنر کرمان.
  5. Acosta, J.A., Jansen, B., Kalbitz, K., Faz, A., and Martinez, S. 2011. Salinity increases mobility of heavy metals in soils. Chemospher, 85: 1318-1324.
  6. Anderson, J.P.E. 1982. Soil respiration. In Page, A.L. (ed), Methods of Soil Analysis. Part 2: Chemical and Microbiological Methods. American Society of Agronomy and Soil Science Society of America, Madison, WI, pp: 831-871.
  7. Babadi, M., Zalaghi, R., and Taghavi, M. 2019. A non-toxic polymer enhances sorghum-mycorrhiza symbiosis for bioremediation of Cd. Mycorrhiza, 29: 375-386.
  8. Behl, R., Osaki, M., Wasaki, J., Watanabe, T., and Shinano, T. 2003. Breeding Wheat for zinc efficiency improvement in semi-arid climate - A review. Tropics, 12: 295-312.
  9. Bouyoucos, G. J. 1962. Hydrometer method improved for making particle size analysis of soils. Agronomy Journal, 54: 464-465.
  10. Bremner, J.M., Mulvaney, C.S. 1982. Methods of Soil Analysis. Part 2, Chemical and Microbiological Properties, 2nd ed. American Society of Agronomy and Soil Science Society of America, pp: 595-624.
  11. Brookes, P.C. 1995. The use of microbial parameters in monitoring soil pollution by heavy metals. Biology and Fertility of Soils, 19:269–279.
  12. Cappicino, J., Sherman, N. 1992. Microbiology: A laboratory manual. The Benjamin Cummings publishinig company, INC.39. Bridge parkway Redwood city, California, 94065.
  13. Chapman, H.D., and Pratt, P.F. 1961. In: Methods of Analysis for Soils, Plants, and Waters. Riverside, CA.
  14. Cordovilla, M.P., Ligero, F., and Lluch, C. 1999. Effects of NaCl on growth and nitrogen fixation and assimilation of inoculated and KNO3 fertilized Vicia faba L. and Pisum sativum L. plants. Plant Science, 140: 127–13.
  15. Cottenic, A., Veroo, M., Kickens, L., Velgh, G., and Camery, R. 1982. Chemical Analysis for plant and soils Laboratory of Analytical and Agrochemistory. State University of Ghent, Belgium.
  16. Dimkpa, C.O., Merten, D., Svatoš, A., Büchel, G., and Kothe, E. 2009. Metal-induced oxidative stress impacting plant growth in contaminated soil is alleviated by microbial siderophores. Soil Biology and Biochemistry, 41: 154–162.
  17. Dodd, I.C., and Perez-Alfocea, F. 2012. Microbial amelioration of crop salinity stress. Journal of Exprimental Botany, 63(9). 3415-28.
  18. Elgharably, A., and Marschner, P. 2011. Microbial activity and biomass and N and P availability in a saline sandy loam amended with inorganic N and lupin residues. European Journal of Soil Biology, 47: 310-315.
  19. FAO. 2005. Available on URL:http://www.fao.org.
  20. Giller, k., witter, E., and Grath, S.P. Mc. 1998. Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils, Soil Biology and Biochemistry, 30: 1389–1414.
  21. Ghollarata, M., and Raiesi, F. 2007. The adverse effect of soil salinization on the growth of Trifolium alexandrinum L. and associated microbial and biological properties in a soil from Iran. Soil Biology and Biochemistry, 39: 1699-1702.
  22. Glick, B.R., Liu, C., Ghosh, S., and Dumbrof, E.B. 1997. Early development of canola seedlings in the presence of the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2. Soil Biology and Biochemistry, 29: 1233–1239.
  23. Gupta, P.K. 2000. Soil, plant, water, and fertilizer analysis. Agrobios, New Delhi, India.
  24. Hadi, M.R., Khosh Kholgh, N.A., Khavarinejad, R., Kiyam Nekoie, S.M. 2008. The effect of elements accumulation on salinity tolerance in seven genotype durum wheat (Triticum turgidum L.) collected from the Middle East. Iranian Journal of biology, 21: 326-340.
  25. Hani, A., Beauchamp, C.J., Goussard, N., Chabot, R., and Lalande, R. 1998 Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes: Effect on radishes (Raphanus sativus L.). Plant and Soil, 204: 57–67.
  26. Hasnain, S., Sabri, A.N. 1997. Growth stimulation of Triticum aestivum seedlings under Cr-stress by nonrhizospheric Pseudomonas strains. Environmental pollution, 3: 265-273.
  27. Hayat, R., Ali, S., Amara, U., Khalid, R., and Ahmed, I. 2010. Soil beneficial bacteria and their role in plant growth promotion: a review. Annals of Microbiology, 60: 579-598.
  28. Jamil, A., Riaz, S., Ashraf, M., and Foolad, M. R. 2011. Gene Expression Profiling of Plants under Salt Stress. Critical Reviews in Plant Sciences, 30(5): 435-458.
  29. Jenkinson, D.S., Powelson, D.S. 1976. The effect of biocidal treatments of metabolism in soil: A method for measuring soil biomass. Soil Biology and Biochemistry, 8: 209-213.
  30. Kafi, M., Khan, M.A. 2008. Relative salt tolerance of south Khorasan millets. Desert 14: 63-71.
  31. Khan, M.S., Zaidi, A., Wani, P.A., Oves, M. 2008. Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environment Chemistry Letters, 7(1) 1-19.
  32. Khoshgoftarmanesh, A.H., Shariatmadari, H., Karimian, N. 2004. Effect of saline irrigation water Fand Zn application on soil cadmium solubility and its concentration in wheat. Journal of water and soil science, 7(4):53-60.
  33. Lamizadeh, E., Enayatizamir, N., Motamedi, H. 2016. Isolation and Identification of Plant Growth-Promoting Rhizobacteria (PGPR) from the Rhizosphere of Sugarcane in Saline and Non-Saline Soil. International Journal of Current Microbiology and Applied Sciences 5(10):1072-1083.
  34. Loeppert, R.H. and D.L. Suarez. 1996. Carbonate and gypsum. Methods of Soil Analysis. Part 3. American Society of Agronomy, PP: 437-474.
  35. Malakouti, M.J., Keshavarz, P., Saadat, S., and Kholdbarin, B. 2003. Plant nutrition under saline conditions. Sana Press, Tehran, Iran, (In Persian), P: 233.
  36. Maria, S.D., Puschenreiter, M., and Rivelli, A.R. 2013. Cadmium accumulation and physiological response of sunflower plants to Cd during the vegetative growing cycle. Plant Soil Environment, 59: 254-261.
  37. Mayak, S., Tirosh, S., Glick, B.R. 2004. Plant growth promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Physiology, 66:525-530.
  38. Mazloomi, F., and Ronaghi, A. 2012. Effect of salinity and phosphorus on growth and chemical composition of two varieties of spinach. Journal of Science and Technology of Greenhouse Culture, 3 (9): 85-96.
  39. Munso, R.D., Nelson, W.L. 1990. Principle and practice in plant analysis. PP 359-387 In: R.L. Westerman (ed). Soil testing and plant analysis. 3rd ed. SSSA. Madison, WI.
  40. Najafi, N. 2015. Effects of Soil Salinization and Waterlogging on the Concentrations of Some Macronutrients and Sodium in Corn Root. Journal of Crop Ecophysiology, 1:21-40.
  41. Olsen, S.R., and Sommers, L.E. 1982. Phosphorus.pp: 403–429. In: A. L. Page, R. H. Miller and D. R. Keeney (Eds.), Methods of Soil Analysis, Part 2, Madison, WI, ASA, SSSA.
  42. Renella, G., Mench, M., Gelsomino, A., Landi, L., Nannipieri, P. 2005. Functional activity and microbial community structure in soils amended with bimetallic sludges. Soil Biology and Biochemistry, 37:1498–1506.
  43. Rietz, D.N., and Haynes, R.J. 2003. Effects of irrigation- induced salinity and sodicity on soil microbial activity. Soil Biology and Biochemistry, 35: 845–854.
  44. Rhodes, J.D. 1982. Cation Exchange Capacity', in A. L. Page, R. H. Miller and D. R. Keeney (2nd eds), Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties, American Society of Agronomy, Madison, WI, U.S.A, pp: 149–157.
  45. Saravanakumar, D., Kavin, M., Raguchander, T., Subbian, P., Samiyappan, R. 2010. Plant growth promoting bacteria enhance water stress resistance in green gram plants. Plant Physiology, 33: 203-209.
  46. Sarwar, N., Saifullah Malhi, S.S., Zia, M.H., Naeem, A., Bibia, S., and Farida, G. 2010. Role of mineral nutrition in minimizing cadmium accumulation by plants. Journal of the Science of Food and agriculture, 90: 925–937.
  47. Shah, A.S., and Shah, Z. 2011. Changes in soil microbial characteristics with elevated salinity. Sarhad Journal of Agriculture, 27(2): 233-244.
  48. Shahvali, O., Zalaghi, R., Karim, S., Enayatizamir, N. 2017. Assessing growth inhibitory salt stress and cadmium in some rhizosphere bacterial culture medium. The 2nd International Conference and the 10th National Biotechnology Conference of the Islamic Republic of Iran, pp 1-5.
  49. Veselov, D., Kuudoyarova, G., Syymonyan, M., and Veselov, S.T. 2003. Effect of cadmium on ion uptake, transpiration and cytokinin content in wheat seadlings. Plant Physiology, 117: 353-359.
  50. Walkey, A., and Black, I.A. 1934. An examination of the Degtjareff method for determining soil organic matter and proposed modification of the chromic acid titration method. Soil Science, 37: 29–38.
  51. Weisburg, W.G., Barns, S.M., Pelletier, D.A., and Lane, D.J. 1991. 16S Ribosomal DNA Amplification for Phylogenetic Study. Journal of Bacteriology, 173, 697-703.
  52. Yang, J.W., Kloepper, J.W., Ryu, C.M. 2009. Rhizosphere bacteria help plants tolerate abiotic stress. Trends in Plant Science, 14: 1. 1-4.
  53. Zabihi, H.R., Savaghebi, G.R., Khavazi, K., and Ganjali, A. 2009. Effect of application of Pseudomonas fluorescents on yield and yield components of wheat under different soil salinity levels. Journal of Water and Soil, 23)1): 199-208.
  54. Zahran, H.H. 1997. Diversity, adaption and activity of the bacterial flora in saline environments. Biology and Fertility of Soils, 25: 223-211.
  55. Zalaghi, R., Norouzi Masir, M., and Moezzi, A. 2019. Effects of Cd on soil microbial biomass depend upon its soil fraction distribution. Toxicological and Environmental Chemistry, 9-10: 486-496. 
  56. Zarea, M.J. and Karimi, N. 2014. Plant physiological mechanisms of salt tolerance induced by mycorrhizal Fungi and Piriformospora Indica. Springer Science Business Media New York, pp: 133-152.