بررسی تأثیر قارچ‌های تریکودرمای محرک رشد بر بهبود رشد و تغذیه درختان پسته در شرایط باغی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد گروه خاک، دانشکده کشاورزی دانشگاه ولی‌عصر (عج) رفسنجان

2 استادیار گروه خاک، دانشکده کشاورزی، دانشگاه ولی‌عصر (عج) رفسنجان

3 دانشیار گروه گیاهپزشکی، دانشکده کشاورزی، دانشگاه ولی‌عصر (عج) رفسنجان

4 استادیار، پژوهشکده پسته، موسسه تحقیقات علوم باغبانی، سازمان تحقیقات، آموزش و ترویج کشاورزی

5 دانشیار گروه خاک‌، دانشکده کشاورزی، دانشگاه ولی‌عصر (عج) رفسنجان

چکیده

یکی از راه‌کارهای مناسب برای کاهش اثرات نامطلوب کودهای شیمیایی بر خواص فیزیکی و شیمایی خاک و رشد گیاهان، استفاده از کودهای زیستی مانند قارچ‌های محرک رشد گیاه می‌باشد. کودهای زیستی می‌توانند به‌عنوان مکمل یا جایگزین کودهای شیمیایی در کشاورزی پایدار به‌کار برده شوند. بر این اساس، به‌منظور بررسی تاثیر قارچ تریکودرما بر تغذیه و رشد درختان پسته، آزمایشی در قالب طرح بلوک‌های کامل تصادفی، که هر بلوک شامل چهار تیمار (T0) شاهد، (بدون مایه‌زنی قارچ تریکودرما)، گونه Trichoderma harzianum (T1)، گونه Trichoderma viride (T2) و تیمار T3 مخلوط مساوی از مایه‌تلقیح تیمار T1 و T2 در سه تکرار در شرایط باغی انجام گردید. نتایج نشان داد که هر سه تیمار قارچ توانستند پارامترهای رویشی شامل طول شاخه (تا 60%)، تعداد جوانه رویشی (تا 30%)، سطح برگ (تا 50%) و شاخص کلروفیل را (تا 171%) در درختان پسته به‌طور معنی‌داری در مقایسه با شاهد بدون تلقیح افزایش دهند. کاربرد تیمارهای قارچی باعث افزایش معنی‌دار غلظت پتاسیم و روی برگ درختان پسته به ترتیب تا 20 و 70 درصد نسبت به شاهد گردید. کاربرد تیمار T2 باعث افزایش معنی‌دار و 14 درصدی غلظت فسفر و 40 درصدی کلسیم برگ شد. کاربرد دو تیمار T1 و T3 غلظت منیزیم برگ درختان پسته را در مقایسه با شاهد به‌طور معنی‌دار و تا 25 درصد افزایش دادند و تنها تیمار T1 باعث افزایش معنی‌دار و 28 درصدی غلظت آهن برگ در مقایسه با عدم مایه‌زنی درختان شد. استفاده از تیمارهای T1، T2 و T3 به ترتیب باعث افزایش معنی‌دار 2/73، 171 و 2/59 درصدی کلروفیل کل و 6/77، 3/80 و 8/64 درصدی کاروتنویید برگ درختان پسته نسبت به تیمار شاهد گردید. با توجه به نتایج بدست آمده از این پژوهش و پس از انجام آزمایشات مزرعه‌ای بیشتر می‌توان انتظار داشت که بتوان از این قارچ‌ها به‌عنوان کود زیستی (به تنهایی و یا به صورت کاربرد توام) در جهت کاهش حداقل بخشی از مصرف کودهای شیمیایی استفاده کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Trichoderma on growth and nutrition of pistachio trees under common garden condition

نویسندگان [English]

  • Atefeh Hosseinzeynali 1
  • payman abbaszadeh dahaji 2
  • Hossein Alaei 3
  • Javad Hosseinifard 4
  • A. Akhgar 5
1 M.Sc. Graduate student, Department of Soil Science, College of Agriculture, Vali-e-Asr University of Rafsanjan, Iran
2 Assistant Professor, Department of Soil Science, College of Agriculture, Vali-e-Asr University of Rafsanjan, Iran
3 Associate Professor, Department of Plant Pathology, College of Agriculture, Vali-e-Asr University of Rafsanjan, Iran
4 Assistant Professor of soil science, Pistachio Research Institute, Agricultural Research Education and Extension Organization (AREEO), Rafsanjan, Iran
5 Associate Professor, Department of Soil Science, College of Agriculture, Vali-e-Asr University of Rafsanjan, Iran
چکیده [English]

physicochemical properties and plant growth is to use biological fertilizers such as plant growth-promoting fungi. Biological fertilizers could be used as a supplement or alternative to the chemical fertilizers in sustainable agriculture. Accordingly, to investigate the effect of Trichoderma fungi on the nutrition and growth of pistachio trees, an experiment was conducted in a randomized complete block design, in which each block contains four treatments, control (T0) (no inoculation), Trichoderma harzianum (T1), Trichoderma viride (T2) and treatment of an equal mixture of T1 and T2 (T3) in three replications under common garden conditions. The results showed that all three fungal treatments significantly increased growth parameters including branch length (up to 60%), the number of vegetative buds (up to 30%), leaf area (up to 50%), and chlorophyll index (up to 171%) in pistachio trees in comparison with control. The use of fungal treatments significantly increased the concentration of potassium and zinc in pistachio leaves up to 20 and 70%, respectively, compared to the control. T2 treatment significantly increased the phosphorus concentration by 14% and the calcium by 40% in pistachio leaves. The application of  T1 and T3 treatments significantly increased the magnesium concentration up to 25%, in pistachio leaves compared to the control. T1 treatment significantly increased the leaf iron concentration by 28% compared to the control. The application of T1, T2, and T3 treatments significantly increased the content of total chlorophyll up to 73.2, 171, and 59.2% of and carotenoids up to 77.6, 3.80, and 64.8% in pistachio leaves respectively, compared to the control. According to the results of this study and after further field experiments, it can be expected that the studied fungi can be used as biofertilizers (alone or in combination) to reduce the utilization of chemical fertilizers in the future.

کلیدواژه‌ها [English]

  • Auxin
  • Phosphate solubilization
  • Trichoderma viride
  • Trichoderma harzianum
  • phosphorous
  1. پناهی، ب.، ع. اسماعیل پور، ف. فربود، م. موذن پور کرمانی و ح. فریور میهن. 1380. پسته جلد دوم: اصول داشت و برداشت. نشر آموزش کشاورزی. کرج. 54ص.
  2. حسینی­فرد، س.ج.، بصیرت، م.، صداقتی، ن. و اخیانی، ا. 1396. دستورالعمل مدیریت تلفیقی حاصلخیزی خاک و تغذیه درختان پسته. انتشارات موسسه تحقیقات خاک و آب. 101 صفحه.
  3. خلیلی، ج.، تاجبخش، م.، فیاض مقدم ا. و سیادت، ع. 1380. بررسی اثرات محلول‌پاشی عناصر ریز مغذی بر عملکرد و کیفی سورگوم علوفه‌ای. مجله علمی تخصصی گیاه و زیست‌بوم، جلد31. صفحات 35 تا 44
  4. سالاری، ا. روحانی، ح. مهدیخانی مقدم، ع. صابری ریسه، ر. و مهرابی کوشکی، م. 1392 . کارائی دو روش بذرمال و خاک - مصرف تریکودرما روی شاخصهای رشدی گیاه گوجه‌فرنگی. نشریه حفاظت گیاهان )علوم و صنایع کشاورزی(، جلد بیست و هشتم، شماره چهارم، زمستان1393
  5. محمدی، خ.، پاساری، ب.، خزادی، ا.ر.، قلاوند، ا.، آقاعلیخانی، م. و اسکندری، م. 1390. واکنش عملکرد و کیفیت دانه کلزا به منابع مختلف کود دامی، کمپوست و بیولوژیک در منطقه کردستان. مجله الکترونیک تولید گیاهان زراعی. 4 (2): 101-81
  6. ملکوتی، م.ج.، درودی، م.س.، بلالی، م.ر.، افخمی، م.، منوچهری، س.، شهبازی، ک.، شهابیان، م.، مجیدی، ع.، کیانی، ش. و داوودی، م.ح. 1379. توصیه بهینه کودی برای محصولات زراعی و باغی استان کرمان. نشریه فنی شماره 199، نشر آموزش کشاورزی.
  7. میرخانی، ف.، علایی، ح.، محمدی، ا.ح. و حقدل، م. 1395. شناسایی گونه‌های غالب تریکودرما در باغات پسته‌ی استان کرمان. نشریه حفاظت گیاهان. 30(1): 82-92.
  8. Anith, K.N., Faseela, K.M., Archana, P.A. and Prathapan, K.D. 2011. Compatibility of Piriformospora indica and Trichoderma harzianum as dual inoculants in blackpepper (Piper nigrum L.). Symbiosis 55: 11-17.
  9. Arrudaa, L., Beneduzi, A., Martins, A., Lisboa, B., Lopes, C., Bertolo, F., Passaglia Maria, L.M.P. and Vargas, KL. 2013. Screening of Rhizobacteria isolated from maize (Zea mays L.) in Rio Grande do Sul State (South Brazil) and analysis of their potential to improve plant growth. Applied Soil Ecology 63: 15- 22.
  10. Badar, R. and Qureshi, S.A. 2012. Comparative effect of Trichoderma hamatum and host-specific Rhizobium species on growth of Vigna mungo. Journal of Applied Pharmaceutical Science 2(04): 128-132.
  11. Bal, U. and Altintas, S. 2006. A positive side effect from Trichoderma harzianum, the biological control agent increased yield in vegetable crops. Journal of Environment Protection and Ecology 7(2): 383–387.
  12. Barker, A.V. and Pilbem, D.J. 2006. Handbook of Plant Nutrition. CRC press, New York.
  13. Bremner, J.M. and Keeney, D.R. 1965. Steam distillation methods for determination of ammonium nitrate and nitrate. Analytica Chimica Acta 32: 465-495.
  14. Chapman, H.D. and Pratt, F.P. 1961. Ammonium vandate-molybdate method for determination of phosphorus. Methods of analysis for soils, plants and water Pp. 83-94.
  15. Contreras-Cornejo, H.A., Macias-Rodriguez, L., CortesPenagos, C. and Lopez-Bucio, J. 2009. Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin dependent mechanism in Arabidopsis. Plant Physiology 149: 1579–1592.
  16. Contreras-Cornejo, H.A., Ortiz-Castro, R. and Lopez-Bucio, J. 2013. Promotion of plant growth and the induction of systemic defence by Trichoderma: Physiology, genetics and gene expression. Trichoderma biology and applications, eds P. K. Mukherjee, B. A. Horwitz, U. S. Singh, M. Mukherjee, and M. Schmoll (Walingford: CABI), 173–194.
  17. Cottenie, A. 1980. Methods of plant analysis. In soil and plant testing as a basis of fertilizer recommendations. FAO Soils Bulletin, Rome, Italy 64-100.
  18. Cuevas, C. 2006. Soil Inoculation with Trichoderma pseudokoningii rifai enhances yield of rice. Philippine Science 135(1): 31-37.
  19. Demir, S. 2004. Influence of arbuscular mycorrhiza on some physiological growth parameters of pepper. Turkish Journal of Biology 28: 85–90.
  20. Doni, F., Isahak, A., Zain, C.R.C.M. and Yusoff, W.M.W. 2014. Physiological and growth response of rice plants (Oryza sativa L.) to Trichoderma spp. inoculants. AMB Express 4: 2-7.
  21. Ebhin Masto, R., Chhonkar, P.K., Singh, D. and Patra, A.K. 2006. Changes in soil biological and biochemical characteristics in a long-term field trial on a sub-tropical incept soil. Soil Biology and Biochemistry 38: 1577–1582.
  22. Esmaeilpour, A., Van Labeke, M.C., Samson, R., Boeckx, P. and Van Damme, P. 2016. Variation in biochemical characteristics, water status, stomata features, leaf carbon isotope composition and its relationship to water use efficiency in pistachio (Pistacia vera L.) cultivars under drought stress condition. Scientia Horticulturae 211: 158-166.
  23. Estefan, G., Sommer, R. and Ryan, J. 2013. Methods of Soil, Plant and Water Analysis: A Manual for the West Asia and North Africa Region. Beirut, Lebanon, ICARDA.
  24. Ghasemnezhad, A. and Babaeizad, V. 2011. The influence of piri fungus (Priformospora indica) on vegetative growth and the content of caffeic acid of leaves of artichoke (Cynara scolymus L.) plant. Journal of Plant Production Research 18(1): 133-140.
  25. Harman, G.E. 2011. Trichoderma-not just for biocontrol anymore. Phytoparasitica 39:103-108.
  26. Harman, G.E., Howell, C.R., Viterbo, A., Chet, I. and Lorito, M. 2004. Trichoderma species opportunistic, a virulent plant symbionts. Natural Review Microbiology 2: 43-56.
  27. HojjatNooghi, F. and Mozafari, V. 2012. Effects of calcium on eliminating the negative effects of salinity in pistachio (Pistacia vera L.) seedlings. Australian Journal of Crop Science 4: 711-716.
  28. Kalhapure, A., Shete, B. and Dhonde, M. 2013. International Journal of Agriculture and Food Science Technology. Volume 4, Number 3, pp. 195-206.
  29. Kaya, C., Higgs, D., Saltali, K. and Gezerel, O. 2002. Response of strawberry grown at highsalinity and alkalinity to supplementarypotassium. Journal of Plant Nutrition 5(27): 1415-1427.
  30. Li, R.X., Cai, F., Pang, G., Shen, Q.R., Li, R. and Chen, W. 2015. Solubilisation of phosphate and micronutrients by Trichoderma harzianum and its relationship with the promotion of tomato plant growth. PLoS One 10(6): e013008.
  31. Lichtenthaler, H.K. 1987. Chlorophylls and carote-noids: pigments of photosynthetic biomembra-nes. Methods in Enzymology 148: 350-382.
  32. Mohammadi Kashka, F., Pirdashti, H., Yaghoubian, Y. and Bahari Saravi, S.H. 2015. Effect of Trichoderma virens and Piriformospora indica coexistence with Enterobacter sp. on the photosynthetic pigments of pepper (Capsicum annuum L.) plant. The 4th National Congress on Organic and Convetional farming 28-29 August, Ardebil, Iran, pp: 4.
  33. Mohammadi, K.H., Ghalavand, A., Aghahalkhani, M., Sohrabi, Y. and Heidari, G.R. 2010. Influents of chickpea seeds quality of increasing soil fertility different systems. Journal of Crop Production 3: 103-119.
  34. Mozaffari, V. and Malakouti, M.J. 2006. An investigation of some cause of Dieback disorder of pistachio tree and its control throuth balance fertilization in Iran, Acta Horticulture 22: 301-305.
  35. Osiewacz, H.D. and Scheckhuber, C.Q. 2002. Senescence in Podospora anserina. In Molecular biology of fungal development. H. D. Osiewacz, ed. Marcel Dekker, New York. p. 87-108.
  36. Pich, A.L., Miller, R.H. and Keeney, D.R. 1992. Method of Soil Analysis. Part II: Chemical and Mineralogical Properties (2nded.). Madison, Wisconsin.
  37. Rayan, J.R., Estefan, G. and Rashid, A. 2001. Soil and Plant Analysis Laboratory Manual (2nded.). ICADRA. Syria.
  38. Razavi, S. 2005. Pistachio production: Iran vs. the World. Acta Horticulture. 726: 225-230.
  39. Rubio, M. B. Quijada, N. M. Pérez, E. Dominguez, S. Monte, E. and Hermosa, R. 2014. Identifying beneficial qualities of Trichoderma parareesei for plants. Applied and Environmental Microbiology 80: 1864-1873.
  40. Rubio, M.B., Hermosa, R., Vicente, R., Gomez Acosta, F.A., Morcuende, R., Monte, E. and Bettiol, W. 2017. The combination of Trichoderma harzianum and chemical fertilization leads to the deregulation of phytohormone networking, preventing the adaptive responses of tomato plants to salt stress. Frontiers Plant Science 8: 1-14.
  41. Rudresh, D.L., Shivaprakash, M.K. and Prasad, R.D. 2005. Effect of combined application of Rhizobium, phosphate solubilizing bacterium and Trichoderma spp. on growth, nutrient uptake and yield of chickpea (Cicer aritenium L.). Applied Soil Ecology 28: 139-146.
  42. Salehi, A., Seifollah, F., Iranpour, R. and Souraki, A. 2014. The effect of fertilizer use in combination with cow manure on growth, yield and yield components of Black-caraway (Nigella sativa L.). Journal of Agroecology. 6(3): 495-507.
  43. Saravanakumar, K., Shanmuga, V. and Kathiresan, K. 2013. Effect of Trichoderma on soil phosphate solubilization and growth improvement of Avicennia marina. Aquatic Botany 104: 101–105.
  44. Sarikhani, M.R., Oustan, S., Ebrahimi, M. and Aliasgharzad, N. 2018. Isolation and identification of potassium-releasing Trichoderma harzianum, in soil and assessment of their ability to release potassium for plants. European Journal of Soil Scienc69: 1078-1086.
  45. Shaul, P. and Bacaration, F. 1986. In: CRC Hand book of Fruit set and Development, CRC Press In Boca Roton Florida P: 389-399.
  46. Shoresh, M.G., Harman, E. and Mastouri, F. 2010. Induced systemic resistance and plant responses to fungal biocontrol agents. Annual Review of Phytopathology 48: 21–43.
  47. Singh, V., Singh, P., Yadav, R., Awasthi, S., Joshi, B., Singh, R., Lal, R. and Duttamajumder, S. 2010. Increasing the efficacy of Trichoderma harzianum for nutrient uptake and control of red rot in sugarcane. Journal of Horticulture and Forestry 2: 66–71.
  48. Soliemanzadeh, A., Mozafari, V., Tajabadipour, A. and Akhgar, A. 2013. Effect of Zn, Cu and Fe foliar application on fruit set and some quality and quantity characteristics of pistachio trees. Southwestern Journal of Horticulture Biology and Environment 4(1): 19-34.
  49. Tohidloo, G., Souri, M.K. and Eskandarpour, S. 2018. Growth and Fruit Biochemical Characteristics of Three Strawberry Genotypes under Different Potassium Concentrations of Nutrient Solution. Open Agriculture3: 356-362.
  50. Vaid, S.K., Kumar, B., Sharma, A., Shukla, A.K. and Srivastava P.C. 2014. Effect of zinc solubilizing bacteria on growth promotion and zinc nutrition of rice .Journal of Soil Science and Plant Nutrition 14(4): 889-910.
  51. Vinale, F., Sivasithamparam, K., Ghisalberti, E.L., Marra, R., Woo, S.L. and Lorito, M. 2008. Trichoderma–plant–pathogen interactions. Soil Biology and Biochemistry 40: 1-10.
  52. Yadidia, I., Srivastva, A.K., Kapulnik, Y. and Chet, I. 2001. Effect of Trichoderma harizanum on microelement concentrations and increased growth of cucumber plants. Plant and Soil 235: 235-242.
  53. Zhao, L., Wang, F., Zhang, Y. and Zhang, J. 2014. Involvement of Trichoderma asperellum strain T6 in regulating iron acquisition in plants. Journal Basic Microbiology 54: 115-124.