اثر کاربرد فسفر بر منابع کودهای آلی و شیمیایی بر فعالیت آنزیم‌های فسفاتاز اسیدی و قلیایی در منطقه قزوین

نوع مقاله : مقاله پژوهشی

نویسنده

بخش تحقیقات خاک و آب مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان قزوین، سازمان تحقیقات، آموزش و ترویج کشاورزی، قزوین، ایران

چکیده

فعالیت آنزیم­های فسفاتاز اسیدی و قلیایی وابستگی زیادی به فراهمی فسفر در خاک دارد. به‌منظور بررسی اثر کود شیمیایی فسفر و کودهای آلی بر فعالیت این آنزیم­ها، آزمایشی در قالب طرح کاملاً تصادفی با سه تکرار در کشت گندم در منطقه قزوین انجام شد. تیمارها شامل: کاربرد 100 درصد کود شیمیایی فسفری بر اساس آزمون خاک، کاربرد 20 تن در هکتار ماده خشک کود آلی (کمپوست زباله شهری)، کاربرد 20 تن در هکتار ماده خشک کود گوسفندی و شاهد (بدون مصرف کود) بود. نتایج حاصل از آزمایش نشان داد که کاربرد کودهای آلی میزان  فعالیت آنزیم فسفاتاز قلیایی و اسیدی نسبت به کاربرد کود شیمیایی سوپر فسفات تریپل افزایش معنی‌داری داشت. میزان افزایش فعالیت آنزیم فسفاتاز قلیایی با کاربرد کودهای کمپوست زباله شهری و گوسفندی به ترتیب 5/29 و1/26 درصد نسبت به سوپر فسفات تریپل بالاتر بود. هر سه تیمار کودی نسبت به شاهد فعالیت آنزیم فسفاتاز قلیایی را افزایش دادند، به‌طوری‌که این میزان افزایش با کاربرد کودهای کمپوست زباله شهری، گوسفندی و سوپر فسفات تریپل به ترتیب 6/62، 5/58 و 7/25 درصد نسبت به شاهد بالاتر بود. با کاربرد کود سوپر فسفات تریپل میزان جذب فسفر توسط گیاه 9/5 کیلوگرم در هکتار نسبت به شاهد افزایش نشان داد. این مقادیر برای کودهای کمپوست زباله شهری و گوسفندی نسبت به شاهد به ترتیب 7/8 و 2/9 کیلوگرم در هکتار بود. به استناد داده‌های این آزمایش مصرف کودهای آلی منجر به افزایش میزان فعالیت آنزیم فسفاتاز و افزایش میزان جذب فسفر توسط گندم گردید. 

کلیدواژه‌ها


عنوان مقاله [English]

Effect of chemical and organic fertilizers on acid and alkaline Phosphatase activities in the Qazvin region

نویسنده [English]

  • Jafar Shahabifar
Soil and Water Research Section, Qazvin Agricultural and Natural Resources Research and Education Center, Agricultural Research Education and Extension Organization (AREEO), Qazvin, Iran
چکیده [English]

Soil phosphorus availability is mostly dependent on acid and alkaline phosphatase activities. The present experiment was carried out in a completely randomized design with four treatments and three replications in Qazvin soils under wheat cultivation. Treatments included: application of 100% phosphorus fertilizer based on soil test (TSP), municipal solid wastes compost (MSWC): 20 tons per hectare, sheep manure (SM): 20 tons per hectare, and control (without fertilizer). The results showed that the application of organic fertilizers significantly increased the activity of alkaline and acidic phosphatase compared to the TSP treatment. When MSWC and SM applied to the soil, alkaline phosphatase activity increased by 29.5% and 26.1% compared to the TSP treatment, respectively. All three fertilizer treatments increased the activity of alkaline phosphatase compared to the control. MSWC, SM, and TSP treatments increased activity of alkaline phosphatase by 62.6%, 58.5%, and 25.7% compared to control, respectively. The application of TSP fertilizer increased phosphorus uptake by 5.9 kg/ha compared to the control. These values ​​were 8.7 and 9.2 kg/ha for MSWC and SM treatments, respectively. According to the data, the application of organic fertilizers increased phosphatase activity and improved phosphorus uptake by wheat.

کلیدواژه‌ها [English]

  • Compost
  • triple superphosphate
  • sheep manure
  • phosphatase enzymes
  • wheat
  1. احمدپورسفیدکوهی، الف. قاجارسپانلو، م. و بهمنیار، م. ع. 1391. تأثیر کاربرد چند دورة متوالی کودهای آلی و شیمیایی بر جذب نیتروژن، فسفر و پتاسیم و برخی ویژگی­های رشد گندم. نشریه دانش کشاورزی و تولید پایدار. شماره 22 جلد 4. صفحات 86-72.
  2. رضایی، ش. خاوازی، ک. نظامی، م.   سعادت، س.1392.  تأثیر گوگرد، فسفر و نقش گیاه بر زیست توده میکروبی و فعالیت فسفاتازهای خاک. مجله پژوهش­های خاک (علوم خاک و آب).  شماره 27، جلد 2، صفحات 217-226.
  3. زاهدی فر، م. کریمیان، ن. رونقی، الف. ، یثربی، ج. و امام، ی. 1390. توزیع فسفر و روی در مراحل مختلف رشد گندم در شرایط مزرعه. مجله آب و خاک ، شماره 25 جلد 3 صفحات: 436-445.
  4. شهبازی، ک. و داودی، م.ح.1391. ارزیابی نیاز فسفر گندم در خاک­های آهکی با استفاده از همدما های جذب فسفر. مجله پژوهش­های خاک (علوم خاک و آب ) الف ،شماره 1 جلد 26. صفحه 17-1.
  5. فرقانی، الف .1382 مطالعه تغییرات بیوشیمیایی و خصوصیات هومیک و فولویک اسید خاک­های مختلف تیمار شده با مواد آلی مختلف. هشتمین کنگره علوم خاک ایران، رشت. 12-9- شهریور. صفحه 15.
  6. فریدونی ناغانی، م . رئیسی، ف . و فلاح، س 1398 .روند تولید CO2 و تغییر کربن بیومس میکروبی در خاک­های تیمار شده با کود اوره و مرغی. مجله علوم و فنون کشاورزی و منابع طبیعی، علوم آب و خاک .شماره 54. صفحات 97-109.
  7. قنبری مفتی کلایی، ه. بهمنیار، م..سالک گیلانی، س . و رئیسی، ف. 1391. اثر سطوح مختلف شوری آب آبیاری و برخی مواد اصلاح کننده بر تنفس میکروبی و فعالیت فسفاتازهای اسیدی و قلیایی خاک ریزوسفری طی رشد رویشی سویا. مجله پژوهش‌های حفاظت آب و خاک. شماره 3. صفحه 63-75.
  8. معینی، م. حجازی مهریزی، م.  و جعفری، الف. 1394. تعیین شکل­های فسفر آلی در یک خاک آهکی متأثر از کشت گندم و کاربرد کودهای آلی. نشریه مدیریت خاک و تولید پایدار. شماره چهارم. جلد پنجم. صفحه 79-95
  9. Allison L.E. and Moodi. C.D. 1962. Carbonates. In: Black C.A. et al., (Ed.), Methods of Soil Analysis- part 2. American Society of Agronomy, Madison, WI. pp. 1379-1396.
  10. Baldoni, G. 1996. The influence of compost and sewage sludge on agriculture crops In: De Bertoldi et al. (Edits). The Science of Composting. Blackie Press, London. Pp: 430-438.
  11. Bhattacharyya, P. Chakrabarti, K. and Chakraborty A. 2005. Microbial biomass and enzyme activities in submerged rice soil amended with municipal solid waste compost and decomposed cow manure. Chemosphere 60: 310-318.
  12. Blagodatsky, S.A. and Richter, O. 1998. Microbial growth in soil and nitrogen turnover: A theoretical model considering the activity state of microorganisms. Soil Biology and Biochemistry 30:1743-1755.
  13. Bouyoucos, C.J. 1962. Hydrometer method improved for making particle size analysis of soil. Agronomy Journal 45, 464-465.
  14. Chen, H. 2003. Phosphatase activity and P fractions in soils of an 18-year-old Chinese fir (Cunninghamia lanceolata) plantation. Forest Ecology and Management 178: 301–310.
  15. Dick, W.A. and Tabatabai, M.A. 1993. Significance and potential uses of soil enzymes. In: Metting, F.B. (Ed.), Soil Microbial Ecology: Application in Agricultural and Environmental Management. Marcel Dekker, New York: 95- 125.
  16. Eivazi, F. and Tabatabai M.A. 1977. Phosphatases in soils. Soil Biology and Biochemistry 9: 167-172.
  17. Garg, S. and Bahl, G.S. 2008. Phosphorus availability to maize as influenced by organic manures and fertilizer P associated phosphatase activity in soils. Bioresource Technology 99 (13): 5261-5996.
  18. Guimaraes, L.H.S., Simone C.P.N. and Michele M. 2006. Screening of filamentous fungi for production of enzymes of biotechnological interest. Brazilian Journal of Microbiology, 37: 474-480.
  19. Hoitiink, H.A. J. Rose, M. and Zondag, R.L. 1994. Properties of material available for formulation of high-quality container media. The Ohio State University, Extension Research Bulletin, Ornamental Plants, SC 154. Columbus, OH.
  20. Juma, N.G. and Tabatabai, M.A. 1977. Effects of trace elements on phosphatase activity in soils. Soil Science Society of America 41: 343–346.
  21. Kuo, S. 1996. Phosphorus. In: Sparks D.L. (Ed.), Methods of soil analysis-Part 3. Chemical Methods No. 5.Soil Science Society of America and American Society of Agronomy Madison, pp. 869-919.
  22. Leelahawonge, C. and Pongsilp, N. 2009. Phosphatase Activities of Root-nodule Bacteria and Nutritional Factors Affecting Production of Phosphatases by Representative Bacteria from Three Different Genera. KMITL science technology. 9: 65-83.
  23. Liang, Y. Yang, Y. Yang, Ch. Shen, Q. Zhou, J. and Yang, L. 2003. Soil enzymatic activity and growth rice and barley as influenced by organic manure in an anthropogenic soil. Geoderma 115: 149-160.
  24. Mandal, A. Patra, A.K. Singh D. Swarup, A. and Masto, R.E. 2007. Effect of long-term application of manure and fertilizer on biological and biochemical activities in soil during crop development stage. Bio resource Technology 98: 3585-3592.
  25. Neble, S. Calvert, V. petil, J.L. and Steven, C. 2007. Dynamics of phosphatase activities in a cork oak litter (Quercus suber L.) following sewage sludge application. Soil Biology and Biochemistry 39:2735–2742.
  26. Nelson D.W. and Sommers, L.E. 1996. Total carbon, organic carbon and organic matter. In: Sparks DL.(Ed.),  Methods of Soil Analysis- Part 3. Chemical Methods. pp. 961-1010.
  27. Nwoke, O.C. Vanlauwe, B. Diels, J. Sanginga, N. and Osonubi, O. 2004. Impact of residue characteristics on phosphorus availability in West African savanna soils. Biology and Fertility of Soil 39: 422-428.
  28. Omer Amal, M. and Farag H.I.A. 2012. Biological activity of phosphate dissolving bacteria and their effect on some genotypes of barley production. Journal of Applied Sciences Research 8 (7): 3478-3490.
  29. Perucci, P. 1990. Effect of the addition of municipal soild-waste compost on microbial biomass and enzyme activities in soil. Biol. Fertility Soils 10: 221-226.
  30. Pettipas, F.C. 2004. Soil and plant nutrient relationships in processing carrots. MSc. Thesis, Nova Scotia Agricultural College, Truro, Nova Scotia.
  31. Philip, A. Thomas, J. and Xiaodun, He. 2008. Bioavailability of Organically-Bound Soil Phophorous. Cannadian Journal of Microbiolology, 43: 577-582.
  32. Phukan, R. Samanta, R. and Barthakur B.K. 2011. Phosphatase Activity of Aspergillus niger: A Native Tea Rhizosphere Isolate. Journal of Applied Science and Technology 77(9): 403-405.
  33. Reddy, D.D. Rao, A.S. and Rupa, T.R. 2005. Effects of continuous use of cattle manure and fertilizer phosphorus on crop yields and soil organic phosphorus in a Vertisol. Bioresource Technology 75: 113-118.
  34. Ros, M. Hernandez M.T. and Garcia, C. 2003. Soil microbial activity after restoration of a semiarid soil by organic amendments. Soil Biology and Biochemistry 35: 463-469.
  35. Saffari, S.A. and Sharifi ,Z. 2007. Changes of available phosphorus and phosphatase activity in the rhizosphere of some field and vegetation crops in the fast growth stage. Journal of Applied Sciences and Environmental Management 11: 113-118.
  36. Saha, S. Mina, B.L. Gopinath K.A. Kundu, S. and Gupta, H.S. 2008. Relative changes in phosphatase activities as influenced by source and application rate of organic composts in field crops. Bioresource Technology Journal 99: 1750-1757.
  37. Saparatka, N. 2003. Phosphatase activities (ACP-ALP) in Agro ecosystem Soils. Doctoral thesis. Swedish University of Agricultural Sciences.
  38. Skudra, I. and Skudra, A. 2004. Phosphorus concentration in soil and in winter wheat plants. Proceedings of the 4th International Crop Science Congress, Brisbane, Australia [http://www.cropscience.org.au/].
  39. Sui, Y.B. and Thompson M.L. 2000. Phosphorus sorption/desorption and buffering capacity in a biosolids amended Mollisol. Soil Science Society of America Journal64: 164-169.
  40. Tabatabai, M. A. 2003. Enzymes: past, present and future. Second international conference on enzyme in the environment: Activity, Ecology and Application. Prague, Czech Republic 14-17.
  41. Tabatabai, M.A. and Bremner, J.M. 1969. Use of p-nitrophenylphosphate for assay of soil phosphatase activity. Soil Biology Biochemistry 1: 301-307.
  42. Thomas, G.W. 1996. Soil pH and soil acidity. In" Methods of soil analysis. Part3. Chemical methods" (Ed. Dl. Sparks). pages 475-490. Soil Science Society America. Madison, WI.
  43. Urner, B.L. Frossard, E. and Baldwin D.S. 2005. Organic Phosphorus in the Environment. CABI Publishing Series. 412.
  44. Wang, A.S. Angle, J.S. Chaney R.L. Delorme T.A. and McIntosh M. 2006. Changes in soil biological activities under reduced soil pH during. Thlaspi caerulescens phytoextraction. Soil Biology and Biochemistry 38: 1451–1461.