تأثیر گونه‌های Streptomyces بر کارایی میکوریز آربوسکولار و رشد شبدر

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه علوم خاک، دانشکده کشاورزی، دانشگاه فردوسی مشهد

2 استاد گروه علوم خاک، دانشکده کشاورزی، دانشگاه فردوسی مشهد

3 استاد گروه علوم خاک، دانشکده کشاورزی، دانشگاه تبریز

4 استادیار میکروبیولوژی- دپارتمان بیوتکنولوژی مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان آذربایجانشرقی، مؤسسه تحقیقات واکسن و سرم سازی رازی، سازمان تحقیقات و آموزش کشاورزی، تبریز

5 استادیار گروه علوم خاک، دانشکده کشاورزی، دانشگاه فردوسی مشهد

چکیده

تعدادی از ریزجانداران از جمله اکتینوباکترها یا برخی متابولیت‌های حاصل از آنها به افزایش توسعه­ی میسیلیوم‌های قارچی و کلنیزه شدن ریشه با قارچ­های میکوریز آربوسکولار (AM) و شاخص‌های رشدی گیاهان کمک می‌کنند. پژوهش حاضر با هدف بررسی تأثیر چهار گونه­ی بومی Streptomyces griseus، S. albogriseus، S. sp1 و S. sp2 بر کلنیزه شدن و فراوانی هیف و وزیکول در ریشه­ی گیاه شبدر برسیم (Trifolium alexandrinum) میکوریزی شده با قارچ Rhizophagus irregularis در قالب طرح کاملا" تصادفی (CRD) با سه تکرار انجام شد. تیمارها شامل 1 شاهد (تنها قارچ R. irregularis) و 4 تیمار قارچ R. irregularis + گونه­های Streptomyces بودند. آزمایش بررسی تأثیر این چهار گونه­ی Streptomyces بر وزن تر و خشک ریشه و اندام هوایی و غلظت فسفر ریشه و اندام هوایی گیاه میکوریزی شده به صورت فاکتوریل و در قالب طرح پایه کاملا" تصادفی با دو فاکتور قارچ در دو سطح (شاهد و R. irregularis) و اکتینوباکتر در 5 سطح (شاهد و 4 گونه­ی Streptomyces) در سه تکرار انجام شد. نتایج نشان داد که گونه­ی  S. albogriseusباعث تحریک تشکیل همزیستی میکوریزی در ریشه­ی گیاه شبدر شد و همچنین پتانسیل قارچ میکوریزی را در افزایش توانایی گیاه در جذب فسفر و رشد ریشه و اندام هوایی به طور قابل توجهی افزایش داد. سه گونه­ی S. griseus، S. albogriseus و S. sp2 باعث افزایش معنی‌دار درصد کلنیزه شدن و فراوانی اندام‌های قارچی در ریشه­ی میکوریزی شبدر شدند. درصد کلنیزه شدن ریشه از 61/48 درصد در شاهد به 59/86، 93/72 و 90/66 درصد به ترتیب در کشت توأم با S. albogriseus، S. griseus و S. sp2 افزایش یافت. فراوانی هیف در ریشه­ی میکوریزی به ترتیب از 32/45 درصد در شاهد به 55/92، 48/85 و 47/71 درصد در تیمارهای S. albogriseus، S. griseus و S. sp2 افزایش یافت. تلقیح ریشه‌های میکوریزی شبدر با گونه­ی S. albogriseus، وزن تر و خشک ریشه و اندام هوایی و غلظت فسفر ریشه و اندام هوایی گیاه را به طور معنی‌داری افزایش داد. گونه‌های S. griseus و S. sp2 تنها وزن خشک اندام هوایی و غلظت فسفر ریشه و اندام هوایی گیاه را افزایش دادند. با توجه به نتایج حاصل از پژوهش حاضر پیشنهاد می­شود که کارایی گونه­ی S. albogriseus در تولید زادمایه­ی قارچ R. irregularis به منظور تقویت پتانسیل آن بررسی شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effects of Streptomycets on colonization and growth of white clover inoculated with arbuscular mycorrhiza

نویسندگان [English]

  • zahra pourmirzaei 1
  • Amir Lakzian 2
  • nasser aliasgharzad 3
  • alireza dehnad 4
  • Akram Halajnia 5
1 PhD student, Department of Soil Sciences, Faculty of Agriculture, Ferdowsi University of Mashhad
2 Professor, Department of Soil Sciences, Faculty of Agriculture, Ferdowsi University of Mashhad
3 Professor, Department of Soil Sciences, Faculty of Agriculture, University of Tabriz
4 Assistant Professor of Microbiology, Biotechnology Department, East Azerbaijan Research and Education Center Agricultural and Natural Resources, Razi Vaccine and Serum Research Institute, AREEO, Tabriz- Iran
5 Assistant Professor, Department of Soil Sciences, Faculty of Agriculture, Ferdowsi University of Mashhad
چکیده [English]

The presence of some microorganisms including actinomycetes or their metabolites increase the growth of fungal mycelium, roots colonization and plant growth indices. In this study, an experiment was carried out in a completely random design (CRD) with three replications. The effects of four actinomycete species (S. griseus, S. albogriseus, S.sp1 and S.sp2) were examined on the frequency of hyphae, vesicles and colonization of clover root (Trifolium alexandrinum) inoculated by Rhizophagus irregularis. Wet and dry weight and phosphorus concentrations were measured in shoot and root of clover. The results showed that mycorrhizal symbiosis greatly stimulated by S. albogriseus and root and shoot growth and phosphorus absorption significantly increased in shoot and root of clover. Three species of actinomycetes considerably improved the fungal organs frequency in clover root, and the percentage of root colonization increased from 48.61% (in control) to 86.59, 72.93% and 66.90% in S. albogriseus, S. griseus, and S. sp2 treatments respectively. The frequencies of hyphae in clover roots increased from 45.32% (in control) to 92.55, 85.48 and 71.47% S. albogriseus, S. griseus, and S. sp2 treatments respectively. Inoculation of mycorrhizal roots of clover with S. albogriseus significantly increased the wet and dry weight and phosphorus concentrations of clover roots and shoots but S. griseus and S. sp2 treatments increased shoot dry weight and phosphorus concentration in the roots and shoot of clover root. S. albogriseus could possibly be used in the production and preparation of R. irregularis inoculant.

کلیدواژه‌ها [English]

  • Mycorrhiza helper bacteria
  • Clover
  • Mycorrhiza symbiosis
  • Streptomyces
  1. امیرآبادی، م.، م. اردکانی، ف. رجالی، م. برجی، غ. ثواقبی. ١٣٨٦. بررسی اثر میکوریزا و ازتوباکتر برمیزان کلنیزاسیون ریشه و صفات مورفولوژیکی ذرت علوفه­ای (رقم سینگل کراس ٧٠٤) تحت تأثیر مقادیر مختلف فسفر در اراک. صفحات ٩٩-٩٨. دهمین کنگره علوم خاک ایران، ٦-٤ شهریورماه ،کرج، ایران.
  2. Abdel-Fattah, G. M. and Mohamedin, G. M. 2000. Interaction between a vesicular-arbuscular mycorrhizal fungus (Glomus intraradices) and Streotomyces coelicolor and their effects on sorghum plants grown in soil amended with chitin of braw scales. Biology and Fertility of Soils. 32: 401-409.
  3. Agnolucci, M., Battini, F., Cristani, C., Giovannetti, M. 2015. Diverse bacterial communities are recruited on spores of different arbuscular mycorrhizal fungal isolates. Biology and Fertility of Soils. 51: 379- 389.
  4. Aliasgharzad, N., Pourmirzaei, Z., Dehnad, A. R. and Najafi, N. 2012. Streptomyces species favour spore germination and hyphal growth of arbuscular mycorrhizal fungus. International Journal of Agriculture. 2(6): 765-773.
  5. Bago, B. and Becard, G. 2002. Bases of the obligate biotrophy of arbuscular mycorrhizal fungi. In: Gianinazzi, S., Schuepp, H., Barea, J. M. and Haselwandter, K. (eds.) Mycorrhizal technology in agriculture. Birkhauser Basel. pp. 33-48.
  6. Baniasadi, F., Shahidi Bonjar, G. H., Baghizadeh, A., Karimi Nik, A., Jorjandi, M., Aghighi, S. and Rashid Farokhi, P. 2009. Biological control of Sclerotinia sclerotiorum, causal agent of sunflower head and stem rot disease, by use of soil borne actinomycetes isolation. American Journal of Agriculture and Biological Sciences. 4(2):146-151.
  7. Bashan, Y. and de-Bashan, L. E. 2005. Plant growth-promoting. In: Encyclopedia of soils in the environment. (Editor-in-Chief) Hillel, D., Elsevier, U. K. Oxford. 1:103-115.
  8. Cottenie, A. 1980. Soil and plant testing. FAO Soils Bulletin. No. 38 (2) :94-100.
  9. Cranenbrouck, S., Voets, L., Bivort, C., Raurent, L., Strullu, D. G. and declerck, S. 2005. Methodologies for in vitro cultivation of arbuscular mycorrhiza fungi with root organs.In: Declerck, S., Strullu, D. G. and Fortin, A.(eds.) In Vitro Culture of Mycorrhizas. Springer-Verlag Berlin Heidelberg. pp. 341-372. Part V Volume 4.
  10. Cui, J., Bahrami, A. K., Pringle, E. G., Hernandez-Guzman, G., Bender, C. L., Pierce, N. E. and Ausubel, F. M. 2005. Pseudomonas syringae manipulates systemic plant defenses ahainst pathogens and herbivores. Proceedings of the National Academy of Sciences, USA. 102:1791-1796.
  11. Dalpe, Y., de Souza, F. A. and Declerck, S. 2005. Life cycle of Glomus species in monoxenic culture.In: Declerck, S., Strullu, D. G. and Fortin, A. (eds.). In Vitro Culture of Mycorrhizas. Springer-Verlag Berlin Heidelberg. pp. 49-71. Part IV. Volume 4.
  12. Dimkpa, C. O., Svatos, A., Dabrowska, P., Schmidt, A., Boland, W. and Kothe, E. 2008. Involvement of siderophores in the reduction of metal-induced inhibition of auxin synthesis in Streptomyces Chemosphere. 74:19-25.
  13. Douds, D. D., Gadkar, J. V. and Adholeya, A. 2000. Mass production of VAM fungus biofertilizer. In: Mycorrhizal biology, edited by Mukerji, K. J. Kluwer Academic Plenum Publishers.
  14. Duponnois, R. and Plenchette, C. 2003. A mycorrhiza helper bacterium enhances ectomycorrhizal and endomycorrhizal symbiosis of Australian Acacia Mycorrhiza. 13:85- 91.
  15. Fortin, J. A., Becard, G., Declerck, S., Dalpe, Y., St-Arnaud, M., Coughlan, A. P. and Piche, Y. 2002. Arbuscular mycorrhiza on root-organ culture. Canadian Journal of Botanical Research. 80:1-20.
  16. Fortin, J. A., Declerck, S. and Strullu, D. G. 2005. In vitro culture of mycorrhizas. In: Declerck, S., Strullu, D. G. and Fortin, A.(eds.). In Vitro Culture of Mycorrhizas. Springer-Verlag Berlin Heidelberg. pp.3-14. Part I. Volume 4.
  17. Frey-Klett, P., Chavatte, M., Clausse, M. L., Courrier, S. L. E., Roux, C., Aaijmakers, J., Martinotti, M. G., Pierrat, J. C. and Garbye, G. 2005. Ectomycorrhiza symbiosis affects functional diversity of rhizosphere Fluorescent pseudomonads. New Phytologist. 165:313-328.
  18. Frey-Klett, P., Garbaye, J. and Tarkka, M. T. 2007. The mycorrhiza helper bacteria revisited. New Phytologist. 176:22-36.
  19. Garbaye, J. 1994. Helper bacteria: a new dimension to the mycorrhizal symbiosis. Tansley review No. 76. New Phytologist. 128:197-210.
  20. Giovannini, L., Pallo, M., Agnolucci, M., Avio, L., Sbranu, C., Turrini, A., Giovannetti, M. 2020. Arbuscular ycorrhizal fungi and associated microbiota as plant biostimulants: research strategies for the selection of the best performing inocula. Agronomy. 10, 106.
  21. Grandmougin-Ferjani, A., Fontaine, J. and Durand, R. 2005. Carbon metabolism, lipid composition and metabolism in arbuscular mycorrhizal fungi. In: Declerck, S., D. G. Strullu, and A. Fortin.(eds.). In Vitro Culture of Mycorrhizas. Springer-Verlag Berlin Heidelberg. pp. 159-180. Part 9. Volume 4.
  22. Hatami, N., Bazgir, E., Sedaghati, E., Darvishnia, M. 2020. The symbiosis study of arbuscular mycorrhizal fungi with some annual herbaceous plants and morphological identification of dominant species of these fungi in kerman province. Biological Journal of Microorganism. 9th year, No. 33.
  23. Jabaji-Hare, S., Deschene, A. and Kendrick, B. 1984. Lipid content and composition of vesicules of a vesicular-arbuscular mycorrhizal fungus. Mycologia. 76:1024-1030.
  24. Kormanik, P. P. and Graw, A. C. Mc. 1982. Quantification of VA mycorrhizae in plant roots. In: Schenck, N. C. (eds.) Methods and principles of mycorrhizal research. American Phytopathological Society. St. Paul. pp.37-45.
  25. Kravchenko, L. V., Leonova, E. L. and Trikhonovich, I. A. 1994. Effect of broot exudates of non-legume plants on the response of auxin production by associated diazotroph. Microbial Releases. 2:267-271.
  26. Krishna, K. R., Balakrishna, A. N. and Bagyaraj, D. J. 1982. Interaction between a vesicular-arbuscular mycorrhizal fungus and Streptomyces cinnamoeous and their effects on finger millet. New Phytologist. 92:401-405.
  27. Long, L., Zhu, H., Yao, Q., Ai, Y. 2008. Analysis of bacterial communities, associated with spores of Gigaspora margarita and Gigaspora rosea. Plant and Soil. 310: 1- 9.
  28. Mika, T., Tarkka, Sarniguet, A. and Frey-Klett, P. 2009. Inter-kingdom encounters:recent advances in molecular bacterium-fungus interactions. Springer-Verlag. 55:233-243.
  29. Nagy, N. E., Fossdal, C. G., Dalen, L. S., Lonneborg, A., Heldal, A. and Johnsen, Q. 2004b. Effects of Rhizoctonia infection and drought on peroxidase and chitinase activity in Norway spruce (Picea abies). Physiologia Plantarum. 120:465-473.
  30. Norris, I. R., Read, D. J. and Varma, A. K. 1992. Methods in Microbiology. Techniques for Study of Mycorrhiza. Academic press, London. Volume 24.
  31. Olsson, P. A., Rahm, J. and Aliasgharzad, N. 2010. Carbon dynamics in mycorrhizal symbioses in linked to carbon costs and phosphorus benefits. FEMS Microbiology Ecology. 72:123- 131.
  32. Rorisons, A. 1987. Method Sheet 3 Nutrient Solution, recipe obtained from Sheffield University.
  33. Schrey, S. D., Schellhammer, M., Ecke, M., Hampp, R. and Tarkka, M.T. 2005. Mycorrhiza helper bacterium Streptomyces AcH505 induces differential gene expression in the ectomycorrhizal fungus Amanita muscaria. New Phytologist. 168:205-216.
  34. Sharma, M. Sc. M. 2008. A functional study on the multilateval symbiosis of the fungal order Sebacinales with plant hosts and bacteria. Dissertation zur erlangung des doctor grades.
  35. Tarkka, M. T., Sarniguet, A. and Frey- Klett, P. 2009. Inter- Kingdom encounters: recent advances in molecular bacterium- fungus interactions. Current Genetics. 55: 233- 243.
  36. Thomas, J., Aspray, E., Eirian, Jones, John, M., Gary, D. and Bending. 2005. Impotance of mycorrhization helper bacteria cell density and metabolite localization for the Pinus sylvestris-Lactarius rufus FEMS Microbiology Ecology. 1:1-9.
  37. Tylka, G. L., Hussey, R. S. and Roncadori. R. W. 1991. Axenic germination of vesicular-arbuscular mycorrhizal fungi: Effects of selected Streptomyces Phytopathology. 81:751-754.