توانایی باکتری‌های سودوموناس‌ فلوروسنت در افزایش زیست فراهمی فسفر خاک و بررسی چند فرمولاسیون از جدایه‌های برتر

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار گروه علوم خاک دانشگاه ولی عصر رفسنجان

2 دانشجوی سابق کارشناسی ارشد دانشگاه ولی عصر رفسنجان

3 استادیار گروه علوم خاک دانشگاه ولی عصر رفسنجان

4 دانشیار گروه گیاه‌پزشکی دانشگاه ولی عصر رفسنجان

چکیده

فسفر یکی از عناصر مورد نیاز گیاه است و کاهش تثبیت یا افزایش فراهمی آن در خاک می‌تواند نقش مؤثری در کاهش مصرف کودهای شیمیایی داشته باشد. این پژوهش به­منظور بررسی چند فرمولاسیون از باکتری سودوموناس فلورسنت حل‌کننده فسفات انجام گرفت. بدین منظور ابتدا ۳۰ جدایه از باکتری­های گروه سودوموناس­ فلورسنت از بانک میکروبی دانشکده کشاورزی دانشگاه ولی‌عصر رفسنجان تهیه گردید. سپس توانایی جدایه­ها برای حل تری­کلسیم فسفات در محیط جامد و مایع اندازه­گیری شد. همچنین در زمان­های 15، 30 و 60 روز، توانایی جدایه­ها در افرایش زیست فراهمی فسفر در خاک (با و بدون حضور خاک فسفات) تعیین گردید. در آخر ماندگاری جدایه‏های منتخب در چند فرمولاسیون مورد بررسی قرار گرفت. نتایج نشان داد تمامی جدایه‌ها قادر به افزایش حلالیت تری­کلسیم فسفات در محیط جامد و مایع PKV و کاهش pH محیط کشت بودند. بیشترین و کمترین حلالیت تری­کلسیم فسفات در محیط جامد PKV به‏ترتیب مربوط به جدایه‏های D33 وD24  و در محیط مایع به‏ترتیب مربوط به D6 وD4  بود. همچنین نتایج نشان داد که جدایهD33  فراهمی فسفر خاک را در زمان­های 15، 30 و 60 روز به‏ترتیب معادل 48، 25 و 75 درصد و جدایهD33  به‏ترتیب معادل 72، 50 و 26 درصد  نسبت به شاهد افزایش دادند. بررسی جمعیت جدایه‏های D33 و  D35 در سه فرمولاسیون پودر تالک، پودر تالک+سبوس برنج و پودر تالک+خاک اره در 150 روز پس از تهیه نشان داد که بیشترین و کمترین جمعیت جدایه D33 به‏ترتیب مربوط به فرمولاسیون پودر تالک و پودر تالک+سبوس برنج (cfu/g 105) و فرمولاسیون پودر تالک+خاک اره (cfu/g 103×8) بود. همچنین بیشترین و کمترین جمعیت جدایه D35 به ترتیب در فرمولاسیون پودر تالک+سبوس برنج (cfu/g 105) و پودر تالک+خاک اره (cfu/g10) مشاهده گردید. در مجموع فرمولاسیون­ پودر تالک+سبوس برنج توانست در پایان 150 روز جمعیت جدایه‏های D33 و  D35 را در حد قابل قبول و معادل  cfu/g106 نگه‏دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The ability of fluorescent pseudomonads to increase Bioavailability of phosphorous in soil and study of some formulation from superior isolates

نویسندگان [English]

  • Abdolreza Akhgar 1
  • Maryam Sadeghi Gogheri 2
  • Payman Abbaszadeh Dahaji Abbaszadeh Dahaji 3
  • Roohallah Saberi Riseh 4
1 Associate professor, Vali-e-Asr University of Rafsanjan
2 Former MSc. student of Vali-e-Asr University of Rafsanjan
3 Assistant professor, Vali-e-Asr University of Rafsanjan
4 Associate professor, Vali-e-Asr University of Rafsanjan
چکیده [English]

Phosphorus is one of the essential elements for plant growth and increase in the availability of indigenous phosphorus have an effective role in reducing the chemical fertilizers consumption. This study was conducted to investigate some inoculant formulations for phosphate-solubilizing fluorescent pseudomonads for agricultural and environmental uses. For this purpose, 30 isolates belong to fluorescent pseudomonad group were collected from microbial bank of Faculty of Agriculture of Vali-e-asr University of Rarsanjan. Then ability of all isolates for solubilizing tricalcium phosphate were studied. In addition, the ability of those isolates for increasing phosphorus availability in soil amended with and without phosphate rock at 15, 30 and 60 days was inspected. Finally, the persistence of the selected isolate was evaluated in some inoculant formulations. The results indicated that all isolates were able to increase the solubility of tricalcium phosphate in solid and liquid media of PKV and the pH of culture medium also decreased significantly. The maximum and minimum phosphate solubilization in solid media of PKV were related to isolates D33 and D24 and in liquid media, it was related to isolates D6 and D4 respectively. The results showed that isolates D33 and D35 increased the soil phosphorus bioavailability in 15, 30, 60 day after inoculation by 48, 25, 75% and 72, 50, 26% respectively. The cell numbers of D33 and D35 isolates in three inoculant formulations including talcum powder, talcum+rice bran and talcum+sawdust (180 days after inoculation) indicated that maximum and minimum of cell numbers of D33 were occurred in talcum powder and talcum+rice bran (105 cfu/g) and talcum+sawdust (8×103 cfu/g)  respectively. Maximum and minimum of cell numbers of D35 were observed in talcum+rice bran (105 cfu/g) and talcum+sawdust (10 cfu/g) respectively. Finally, inoculant formulation of talcum+rice bran was able to maintained an acceptable cell numbers of both isolates D33 and D35 (106 cfu/g) at the end of 150 days.

کلیدواژه‌ها [English]

  • formulation
  • inoculant
  • Plant growth promoting rhizobacteria
  1. احمد زاده، م.، صابری، ر. و عسکری‌نیا، م. 1393. تکنولوژی تولید فرمولاسیون و کاربرد پروبیوتیک‌های گیاهی در کشاورزی. چاپ اول، انتشارات دانشگاه تهران.
  2. خوشرو، ب.، ساریخانی، م. ر. 1397. جداسازی و شناسایی باکتری‏های حل‏کننده فسفات مقاوم به دما برای استفاده در کود میکروبی فسفاتی. نشریه آب و خاک (علوم و صنایع کشاورزی). جلد 3 ( شماره 1)، 155-167
  3. ضیائیان، ا.، سلیم پور، س.، سیلسی پور، م. و صفری، ه. 1388 . ارزیابی برخی از کودهای زیستی و شیمیایی فسفره روی ذرت.اولین کنگره چالش های کود در ایران: نیم قرن مصرف کود. 10-12 اسفند، تهران، ایران.
  4. قاسمی پیرانلو، ف.، ساریخانی، م. و نجفی، ن. 1398. بررسی زنده مانی باکتری cloacae Enterobacter در چند حامل جامد و اثر زادمایه های تهیه شده بر جوانه زنی و رشد گندم. جلد 29 (شماره 3)، 167- 180.
  5. مختارنژاد، ل.، اعتباریان، ح.، فاضلی، م. ر. و خوشایند، م. ر. 1390 بررسی تأثیر مواد افزودنی مختلف روی ماندگاری مخمر Pichia guilliermondii در حامل‏های پودری و کارایی آنها در کنترل کپک آبی سیب. مجله بیماری‏های گیاهی. جلد ۴۷ (شماره ۴)، 435-446.
  6. Antoun, H. 2002. Field and green house trials performed with phosphate solubilizing bacteria and fungi. In: First International Meeting on Microbial Phosphate Solubilization. Salamanca University 16:235-237.
  7. Ardakani, S. S., Heydari, A., Kohorasani, N. and Arjmandi, R. 2010. Development of New Bioformulation of Pseudomonas Fluorescens and evaluation of these products against damping-off of cotton seedlings. Journal of Plant Pathology 92(1):83-88.
  8. Bashan, Y., Kamnev, A. A., de Bashan, L. E. 2013. A proposal for isolating and testing phosphate-solubilizing bacteria that enhance plant growth. Biology and Fertility of Soils 49:1-2
  9. Bora, T., Ozakan, H., Gore, E. and Aslan, E. 2004. Biological control of Fusarium oxysporum sp. melonis by wettabe powder formulation of two strain of Pseudomonas putida. Journal of Phytopathology 152: 471-475.
  10. Bouyoucos, G. J. 1951. A recalibration of hydrometer method for making mechanical analysis of soil. Agronomy Journal 43(9):434-438.
  11. Colla, G., Rea, E., Pierandrie, F. and Salerno, A. 2003. Effects of substrates on yield quality and mineral composition of soilless grown cucumbers. Acta Horticulturae 614:205-209.
  12. Dobbelaere, S., Vanderleyden, J. and Okon, Y. 2003. Plant growth promoting effects of diazotroph sinthe rhizosphere. Critical Reviews in Plant Sciences 22(2):107–149.
  13. Dubey, S. K. and Billore, S. D. 1992. Phosphate solublizing microorganism as inoculant and their role in augmenting crop productivity in India: A review Crop Research Hisar 5(11):1-11.
  14. Evans, M. R. and Gachukia, M. 2004. Fresh parboiled rice hulls serve as an alternative to perlite in greenhouse crop substrates. Horticultural Science 39(2):232-235.
  15. Fageria, N. K. 2009. The use of nutrients in crop plants.CRC Press, Taylor & Francis Group, LLC.USA. New York.
  16. Fernandez, L. A., Zalba, P., Gomez, M. A. and Sagardoy, M. A. 2007. Phosphate solubilization activity of bacterial strains in soil and their effect on soybean growth under green house condition. Journal of Biology Fertility Soils 43(6):805- 809.
  17. Gupta, M. S., Kiran, H., Gulati, A., Singh, B. and Tewari, R. 2012. Isolation and identification of phosphate solubilizing bacteria able to enhance the growth and aloin-A biosynthesis of Aloe barbadensis. Miller Microbiological Research 167(6):358-363.
  18. Gyaneshwar, P., Naresh, K. G., Parekh, L. J. and Poole, P. S. 2002. Role of soil microorganisms in improving P nutrition of plants. Plant and Soil 245(1):83–93.
  19. Hameeda B, Rupela OP, Reddy G. and Satyavani K, 2006. Application of plant growth-promoting bacteria associated with composts and macrofauna for growth promotion of pearl millet (Pennisetumglaucum ). Biology and Fertility of Soils, 44: 260-266.
  20. Harvey, P. R., Warren, R. A. and Wakelin, S. 2009. Potentialto improve root access tophosphorus: the role of non-symbiotic microbial inoculants in the rhizosphere. Crop and Pasture Science 60(2):144–151.
  21. Jambhulkar, P. P. and Sharma. P. 2013. Development of bioformulation and delivery system of Pseudomonas fluorescens against bacterial leaf blight of rice (Xanthomonas oryzae oryzae). Journal of Environmental Biology 35: 843-849.
  22. Jeon, J., Lee, S., Kim, H., Ahn, T. and Song, H. 2003. Plant growth promotion in soil by some inoculated microorganisms. Journal of Microbiology and Biotecnology 41(4):271–276.
  23. Jorjani, M., Heydari, A., Zamanizadeh, H. R., Rezaee, S. and Naraghi, L. 2010. Development of Pseudomonas fluorescens and Bacillus coagulans based bioformulations using organic and inorganic carriers and evaluation of their influence on growth parameters of sugar beet. Journal of Biopesticides 4(2):180-185.
  24. Khoshru, B., Sarikhani, M. R., Aliasgharzad and Zare, P. 2015. Assessment the important PGPR features of isolates used in biofertilizers Barvar2, Biosuperphosphate, Supernitroplus and Nitroxin. Applied Soil Research 3(1): 39-52
  25. Kiani Ersi, M., Noue Parast, M., and Amini, A. 2010. Concentration of Sedimentary phosphate ore using shaking table and leaching with acetic acid. International Conference on Mining. October 18 -21.
  26. Kinay, P. and Yildiz, M. 2008. The shelf life and effectiveness of granular formulations of Metschinkowia pulcherrima and Pichia guilliermondii yeast isolates that control postharvest decay of citrus fruit. Biological Control 45:433-440.
  27. Kloepper, J. W., 1993. Plant growth-promoting rhizobacteria as biological control agents. In: Metting Jr, F.B. (ed.), Soil Microbial Ecology: Application in Agricultural and Enviromental Management, Marcel Dekker, New York, pp. 255-274.
  28. Kumatha, K., Sempavalan J. and Santhanakrishnan, P. 2004. Effect of Insoluble Phosphate and Dual Inoculation on Soybean. In: Biofertilizers Technology, Kannaiyan, S., Kumar, K. and Govindarajan, K. (Eds.). Jodhpur Scientific Publisher, India, pp: 354-358.
  29. Lavakusha, J. Y., Verma, J. P., Jaiswal, D. K. and Kumar, A. 2014. Evaluation of PGPR and different concentration of phosphorus level on plant growth yield and nutrient content of rice (Oryza sativa). Ecology Engineering 62:123–128.
  30. Liu, F. P., Liu, H. Q., Zhou, L., Dong, Z. G., Bai, X. H., Bai, P. and Qiao, J. J. 2014. Isolation and characterization of phosphate-solubilizing bacteria from betel nut (Areca catechu) and their effects on plant growth and phosphorus mobilization in Tropical soils. Biology and Fertility Soils 50(6):927–937.
  31. Malboobi, M. A., Owlia, P., Behbahani, M., Sarokhani, E., Moradi, S., Yakhchali, B., Deljou, A. and Morabbi Heravi, K. Solubilization of organic and inorganic phosphates by three highly efficient soil bacterial isolates. The World Journal of Microbiology and Biotechnology 25:1471-1477
  32. Malusá, E., Sas-Paszt, L., and Ciesielska, J. 2012. Technologies for beneficial microorganisms inocula used as biofertilizers. The Scientific World Journal 23:1-12.
  33. Melin, P., Håkansson, S., Eberhad, T. H. and Schnürer, S. 2006. Survival of the biocontrol yeast Pichia  anomala  after  long-term  storage  in  liquid  formulations and different temperatures, assessed by flow cytometry. Journal of Applied Microbiology 100:264-271.
  34. Melin, P., Håkansson, S. and Schnürer, S. 2007. Optimisation and comparison of liquid and dry formulations of the biocontrol yeast Pichia anomala Applied Microbiology and Biotechnology 73: 1008–1016.
  35. Nakkeeran, S., Fernando, D.W.G. and Siddiqui, Z. A. 2005. Plant growth promoting rhizobacteria formulations and its scope. In: Siddiqui, Z. A. (ed). PGPR: biocontrol and bio-fertilization. Springer, Dordrecht, pp 257-296.
  36. Norrish, K. and Rosser, H. 1983. Mineral Phosphate. In: Soils, an Australian Viewpoint. Illustrated Edition. Academic Press Melbourne, CSIRO/London, UK, Australia.
  37. Olsen, S. R., Cole, C. V., Watanabe, F. S. and Dean, L. A. 1954. Estimation of available phosphorous in soils by extraction with NaHCO3. United States Department of Agriculture, Washington.
  38. Paramasivan, M., Thaveedu, S., Mohan, S. and Muthukrishnan, N. 2019. Survival ability of Trichoderma spp and Pseudomonas in Different carrier Materials. International Journal of Current Microbiology and Applied Sciences 8:1539-1546.
  39. Raghothama, K. G. and Karthikeyan, A. S. 2005. Phosphate acquisition. Plant and Soil compounds producing plant growth-promoting rhizobacteria Pseudomonas fluorescens. Current Science 82(12):1463-1466.
  40. Rashid, M., Khalil, S., Ayub, N., Alam, S. and Latif, F. 2004. Organic acids productions by phosphate solubilizing microorganisms (PSM) under in vitro conditions. Pakistan Journal of Biology Science 7(2):187-196.
  41. Richardson, A., E. Barea, J., M. Neill, M. c., Prigent, A. M. and Combaret, C. 2009. Acquisition Of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant and Soil 321(2):305-339.
  42. Sarikhani, M. R., Khoshru, B. and Oustan, S. 2016. Efficiency of Some Bacterial Strains in Potassium Release from Mica and Phosphate Solubilization under In Vitro Conditions. Geomicrobiology Journal 33(9):832-838.
  43. Schisler, D. A., Slininger, D. J., Behle, R. W. and Jakson, M. A. 2004. Formulation of Bacillus for biological control of plant disease. Journal of Phytopathology 94(11):1267-1271.
  44. Selvi, K. B., Paul, J. J. A., Vijaya, V. and Saraswathi, K. 2017. Analyzing the efficacy of phosphate solubilizing microorganisms by enrichment culture techniques. Biochemistry and Molecular Biology Journal 3(1):1-9.
  45. Sharma, S. B., Sayyed, R. Z., Trivedi, M. H. and Gobi, T. A. 2013. Phosphate solubilising microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springer Plus a Springer Open Journal 2(1):587.
  46. Sivakumar, G., Josephrajkumar, A. and Rangeshwaran,R. 2012. Bioefficacy of peat formulation of bacterial antagonists on growth promotion and disease suppression in cardamom (Elettaria cardamomum Maton). Journal of Biological Control 26: 255-259.
  47. Susilowati, L.E. and Syekhfani, S. 2014. Characterization of Phosphate Solubilizing Bacteria Isolated from Pb Contaminated Soils and Their Potential for Dissolving Tricalcium Phosphate. Journal of Degraded and Mining Lands Management 1:57-62.
  48. Vessey, J. K. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil 255(2):571-586.