اثرات جنگل‌تراشی و نوع کاربری زمین بر برخی خصوصیات شیمیایی و میکروبی خاک در شمال ایران (مطالعه موردی: سلیم‌شیخ ساری)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموخته‌ی کارشناسی ارشد، دانشگاه علوم کشاورزی و منابع طبیعی ساری

2 استادیار گروه علوم خاک، دانشکده‌ی علوم زراعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری

3 دانشیار گروه علوم خاک، دانشکده‌ی علوم زراعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری

چکیده

جنگل‌تراشی و به زیر کشت بردن اراضی جنگلی از یک سو و مدیریت نامناسب کشاورزی از سوی دیگر، دو عاملی هستند که همچنان منابع طبیعی و به ویژه خاک را به صورت جدی تهدید می‌کنند. این مطالعه به منظور بررسی اثرات جنگل‌تراشی و نوع مدیریت زمین بر برخی خصوصیات شیمیایی و میکروبی خاک در لایه‌های 10-0، 20-10 و 40-20 سانتی‌متری سه کاربری جنگل انجیلی، باغ مرکبات و مزرعه گندم در شهرستان ساری صورت پذیرفت. محتوای ماده‌ی آلی، نیتروژن کل، کربن و نیتروژن زیست‌توده‌ی میکروبی در تبدیل جنگل به مزرعه (در هر سه لایه) و باغ (در دو لایه‌ی 10-0 و 20-10 سانتی‌متری) به صورت معنی‎دار کاهش یافته بود. این کاهش در تبدیل جنگل به مزرعه و در عمق نخست، برای ماده‌ی آلی، نیتروژن کل، کربن و نیتروژن زیست‌توده‌ی میکروبی بیشترین و به ترتیب 5/35، 2/51، 7/69 و 8/59 درصد بود. فسفر قابل جذب و تنفس میکروبی در تبدیل جنگل به دو کاربری دیگر فقط در عمق 10-0 سانتی‌متری به صورت معنی‌دار کاهش یافته بود و این کاهش در تبدیل جنگل به مزرعه و در عمق نخست، 2/85 درصد برای فسفر قابل جذب و 1/35 درصد برای تنفس میکروبی بود. C/N میکروبی در تبدیل جنگل به مزرعه به صورت معنی‌دار کاهش و ضریب متابولیک میکروبی در تبدیل جنگل به دو کاربری دیگر به صورت معنی‌دار افزایش یافته بود. فعالیت آنزیمی اوره‌آز در تبدیل جنگل به هر دو کاربری و فعالیت آنزیمی فسفاتاز قلیایی فقط در تبدیل جنگل به مزرعه به صورت معنی‌دار کاهش یافته بود. نتایج این پژوهش نشان داد که تبدیل کاربری جنگل به کشاورزی باعث تغییرات خصوصیات شیمیایی و میکروبی خاک شده است که این تغییرات در تبدیل جنگل به مزرعه بارزتر بود. مهمترین دلائل این کاهش کلی در کیفیت خاک را می‌توان از یک سو برداشت محصول (در هر دو کاربری باغ و مزرعه) و از بین رفتن چرخه‌ی طبیعی و تقریباً بسته‌ی موجود در جنگل، و از سوی دیگر خاکورزی (در مزرعه) و کاربرد کود حیوانی (در باغ) به ترتیب به عنوان عوامل تشدید و تقلیل این تغییرات بیان نمود.

کلیدواژه‌ها


عنوان مقاله [English]

Effects of deforestation and land uses on some chemical and microbial properties of soil in northern Iran (a case study: Salim Sheykh area of Sari)

نویسندگان [English]

  • Hamed Moazami Goodarzi 1
  • Bahi Jalili 2
  • Mehdi Ghajar Sepanlou 3
  • Soroosh Salek-Gilani 2
1 Graduate of the master's degree, Sari Agricultural Sciences and Natural Resources University
2 Assistant Professor., Dept. of Soil Science, Faculty of Department of Crop Sciences, Sari Agricultural Sciences and Natural Resources University
3 Associate Professor., Dept. of Soil Science, Faculty of Department of Crop Sciences, Sari Agricultural Sciences and Naturl Resources University
چکیده [English]

Deforestation and poor farming practices are two factors that seriously threaten natural resources and seriously damage the soil productivity. This study was conducted to investigate the effects of deforestation and land use on some chemical and microbial properties of soil in different layers of evangelical forest, Citrus Garden and wheat farm soils in Sari township. Organic matter content, total nitrogen, carbon and nitrogen of microbial biomass were significantly reduced when evangelical forest converted to wheat farm (in all three layers) and citrus garden (in two layers of 0-10 and 10-20 cm). When evangelical forest converted to wheat farm (in first layer) organic matter, total nitrogen, carbon and nitrogen of microbial biomass were reduced 35.5, 51.2, 69.7 and 59.8%, respectively. Phosphorus availability and microbial respiration were significantly reduced when evangelical forest converted to wheat farm and citrus garden. The amount of reduction for phosphorus availability and microbial respiration were 85.2% and 35.1% respectively for the top layer of wheat farm. Microbial C/N was significantly reduced when evangelical forest transformed to wheat farm and microbial metabolic coefficient was significantly increased when evangelical forest changed to the two other land uses. The urease activity in both land use (citrus garden and wheat farm) and alkaline phosphatase activity were significantly reduced in wheat farm soils. The results of this study showed that changes in the chemical and microbial properties of the soil was more substantial when evangelical forest converted to agriculture land. The most important reasons for reduction of soil quality may be related to the harvesting (in both citrus garden and wheat farm) and the loss of the closed loop of forest, soil tillage (on the farm) and animal manure application.

کلیدواژه‌ها [English]

  • Land use change
  • soil quality
  • microbial biomass
  • enzymatic activity
  1. برومند م.، قاجارسپانلو م. و بهمنیار م.ا. 1393. اثر تغییر کاربری اراضی بر برخی خصوصیات فیزیکی و شیمیایی خاک (مطالعه موردی: سمسکنده ساری). پژوهشنامه مدیریت حوزه آبخیز 9: 94-78.
  2. بهشتی‌آل‌آقا ع.، رئیسی ف. و گلچین ا. 1390. تأثیر تغییر کاربری اراضی جنگلی به کشاورزیبر برخی شاخص‌های بیولوژیک کیفیت خاک در اکوسیستم‌های جنگلی شمال ایران. نشریه بوم‌شناسی کشاورزی. 3(4): 453-439.
  3. خالدیان ی.، کیانی ف.، ابراهیمی س. و موحدی‌نائینی ع. 1390. تأثیر تخریب جنگل‌ها، تغییر کاربری اراضی و ویلاسازی بر برخی شاخص‌های کیفیت خاک در حوضه زیارت استان گلستان. مجله پژوهش‌های حفاظت آب و خاک 18(3): 184-167.
  4. عجمی م.، خرمالی ف. و ایوبی ش. 1391. نقش تخریب جنگل‌ها و تغییر کاربری اراضی بر فرسایش‌پذیری خاک‌های لسی شرق استان گلستان.
  5. علی‌اصغرزاد ن. 1389. روش‌های آزمایشگاهی در بیولوژی خاک. 522 ص. مجله پژوهش‌های آبخیزداری. 94: 44-37.
  6. Abera G. and Wolde-Meskel E. 2013. Soil properties, and soil organic carbon stocks of tropical andosol under different land uses. Open Journal of Soil Science 3:153-162.
  7. Acosta-Martinez V., Cruz L., Sotomayor-Ramirez D. and Perez-Alegria L. 2007. Enzyme activities as affected by soil properties and land use in a tropical watershed. Applied Soil Ecology 35:35-45.
  8. Alef K. and Nannipieri P. 1995. Methods in applied soil microbiology and biochemistry. Academic Press, London, 578 p.
  9. Araujoa A.S.F., Cesarz S., Leite L.F.C., Borges C.D., Tsai S.M. and Eisenhauer N. 2013. Soil microbial properties and temporal stability in degraded and restored lands of Northeast Brazil. Soil Biology & Biochemistry 66:175-181.
  10. Bastida F., Zsolnay A., Hernandez T. and Garcia C. 2008. Past, present and future of soil quality indices: A biological perspective. Geoderma 147:159–171.
  11. Berber S., Farasat F., Naml A. 2012. Afforestation effects on phsycal, chemical and biological soil properties. 8th International Soil Since Congress. Izmir-Turkey.
  12. Bremner J.M. and Mulvaney C.S. 1982. Nitrogen total. pp. 595- 624. In: Page, A. L., Miller, R. H. and Keeney, D. R. (eds.). Methods of soil analysis. Part 2. Chemical analysis. American Society of Agronomy and Soil Science Society of American, Madison, Wisconsin.
  13. Bini D., Alcantara dos Santos C., Banhos do Carmo K., Kishino N., Andrade G., Zangaro W. and Antonio Nogueira M. 2013. Effects of land use on soil organic carbon and microbial processes associated with soil health in southern Brazil. European Journal of Soil Biology 55:117-123.
  14. Bissett A., Abell G.C.J., Brown M., Thrall P.H., Bodrossy L., Smith M.C., Baker G.H. and Richardsson A.E. 2014. Land-use and management practices affect soil ammonia oxidizer community structure, activity and connectedness. Soil Biology and Biochemistry 78:138-148.
  15. Bouyoucos G.J. 1962. Hydrometer method improved for making particles size analyses of soils. Agronomy Journal 56:464-465.
  16. Chaer G.M., Myrold D.D. and Bottomley P.J. 2009. A soil quality index based on the equilibrium between soil organic matter and biochemical properties of undisturbed coniferous forest soils of the Pacific Northwest. Soil Biology and Biochemistry 41:822-830.
  17. Conti G., Perez-Harguindeguy N., Quetier F., Gorne L.D., Jaureguiberry P., Bertone G.A., Enrico L., Cuchietti A. and Diaz S. 2014. Large changes in carbon storage under different land-use regimes in subtropical seasonally dry forests of southern South America. Agriculture, Ecosystems and Environment 197:68-76.
  18. Cram S., Sommer I., Fernández P., Galicia1 L., Ríos C. and Barois I. 2015. Soil natural capital modification through landuse and cover change in a tropical forest landscape: implications for management. Journal of Tropical Forest Science 27(2):189-201.
  19. Cruz R.E., Cruz R.A., Vaca R, del-Aguila P. and Lugo J. 2015. Assessment of soil parameters related with soil quality in agricultural systems. Life Science Journal 12(1), 154-161.
  20. Fanin N. and Bertrand I. 2016. Aboveground litter quality is a better predictor than belowground microbial communities when estimating carbon mineralization along a land-use gradient. Soil Biology and Biochemistry 94: 48-60.
  21. Habig J. and Swanepoel C. 2015. Effects of conservation agriculture and fertilization on soil microbial diversity and activity. Environments 2:358-384.
  22. Kabiri V., Raiesi F. and Ghazavi M.A. 2016. Tillage effects on soil microbial biomass, SOM mineralization and enzyme activity in a semi-arid Calcixerepts. Agriculture, Ecosystems and Environment 232:73–84.
  23. Kara O. and Bolat I. 2008. The effect of different land uses on soil microbial biomass carbon and nitrogen in bartin province. Turkish Journal of Agriculture and Forestry 32:281-288.
  24. Kumar S., Chaudhuri S. and Maiti S.K. .2013. Soil dehydrogenase enzyme activity in natural and mine soil- A review. Middle-East Journal of Scientific Research 13(7):898-906.
  25. Lee Z.M., Schmidt T.M. 2014. Bacterial growth efficiency varies in soils under different land management practices. Soil Biology and Biochemistry 69:282-290.
  26. Li , Liang J.H., He Y.Y., Hu Q.J. and Yu S. 2014. Effect of land use on soil enzyme activities at karst area in Nanchuan, Chongqing, Southwest China. Plant Soil Environ 60(1):15-20.
  27. Lopes E.L.N., Fernandes A.R., Ruivo M.L.P., Cattanio J.H. and Souza G.F. 2011. Microbial biomass and soil chemical properties under different land use systems in northeastern Para. Revista Brasileira de Ciencia do Solo 35:1127-1139.
  28. Luo Y. and Zhou X. 2006. Soil Respiration and the Environment. Academic Press is an imprint of Elsevier, 316 p.
  29. Maharjan M., Sanaullah M. and Kuzyakov Y. 2016. Effect of land use on microbial biomass and enzyme activities in tropical soil. Geophysical Research Abstracts 18:4318.
  30. Martinez-Salgado M.M., Gutierrez-Romero V., Jannsens M. and Ortega-Blu R. Biological soil quality indicators: a review. Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology :319-328.
  31. Mganga K.Z., Razavi B.S. and Kuzyakov Y. 2015. Microbial and enzymes response to nutrient additions in soils of Mt.Kilimanjaro region depending on land use. European Journal of Soil Biology 69:33-40.
  32. Morugan-Coronado A., Garcia-Orenes F. and Cerda A. 2015. Changes in soil microbial activity and physicochemical properties in agricultural soils in eastern Spain. Spanish Journal of Soil Science 5(3):201-213.
  33. Mukhopadhyay S. and Joy V.C. 2010. Influence of leaf litter types on microbial functions and nutrient status of soil: Ecological suitability of forest trees for afforestation in tropical laterite wastelands. Soil Biology and Biochemistry 42:2306-2315.
  34. Muscolo A., Rosaria Panuccio M., Mallamaci C. and Sidari M. 2014. Biological indicators to assess short-term soil quality changes in forestecosystems. Ecological Indicators. 45:416-423.
  35. Nelson D.W. and Somers L.E. 1996. Total carbon, organic carbon and organic matter of soil analysis. Part 3. Chemical Methods. Madision, Wisconsin. USA Pp: 961-
  36. Olsen S.R., Cole C.V., Watanabe F.S. and Dean L.A. 1954. Estimation of Available Phosphorous in Soils by Extraction with Sodium Bicarbonate; U.S. Department of Agriculture: Washington, D.C., USDA Circ. 939.
  37. Pabst H., Gerschlauer F., Kiese R. and Kuzyakov Y. 2015. Land use and precipitation affect organic and microbial carbon stocks and the specific metabolic quotient in soils of eleven ecosystems of mt. Kilimanjaro, Tanzania. Land Degradation & Development. http://onlinelibrary.wiley.com/ doi/ 10.1002/ ldr.2406/ full.
  38. Raiesi F. and Beheshti A. 2015. Microbiological indicators of soil quality and degradation following conversion of native forests to continuous croplands. Ecological Indicators 50:173-185.
  39. Renella G., Mench M., Landi L. and Nannipieri P. 2005. Microbial activity and hydrolase synthesis in long-term Cd-contaminated soils. Soil Biology and Biochemistry 37:133-139.
  40. Rinkes Z.L., Weintraub M.N., Deforest J.L. and Moorhead D.L. 2011. Microbial substrate preference and community dynamics during decomposition of Acer saccharum. Fungal Ecology 4:396-407.
  41. Salek-Gilani S., Raiesi F., Tahmasebi P. and Ghorbani N. 2013. Soil organic matter in restored rangelands following cessation of rainfed cropping in a mountainous semi-arid landscape. Nutrient Cycling in Agroecosystems 96:215-232.
  42. Saviozzi A., Levi-Minzi R., Cardelli R. and Riffaldi R. 2001. A comparison of soil quality in adjacent cultivated, forest and native grassland soils. Plant and Soil 9:233-251.
  43. Schinner F., Ohlinger R., Kandeler E. and Margesin, R. 1996. Methods in soil biology. Publish in Springer Berlin Heidelberg, 522 p.
  44. Silva D.K.A., Freitas N.O., Sousa R.G., Silva F.S.B., Araujo A.S.F. and Maia L.C. 2012. Soil microbial biomass and activity under natural and regenerated forests and conventional sugarcane plantations in Brazil. Geoderma 189:257-261.
  45. Sinsabaugh R.L. 2010. Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biology and Biochemistry 42:391-404.
  46. Spohn M. 2015. Microbial respiration per unit microbial biomass depends on litter layer carbon-to-nitrogen ratio. Biogeosciences 12:817-823.
  47. Tardy V., Spor A., Mathieu O., Leveque J., Terrat S., Plassart P., Regnier T., Bardgett R.D., Putten W.H., Roggero P.P., Seddaiu G., Bagella S., Lemanceau P, Ranjard L and Maron P.A. 2015. Shifts in microbial diversity through land use intensity as drivers of carbon mineralization in soil. Soil Biology and Biochemistry 90:204-213.
  48. Turner B.L. and Haygarth P.M. 2005. Phosphatase activity in temperate pasture soils: Potential regulation of labile organic phosphorus turnover by phosphodiesterase activit. Science of the Total Environment 344:27-36.
  49. Wallenius K., Rita H., Mikkonen A., Lappi K., Lindstrom K., Hartikainen H., Raateland A. and Niemi R.M. 2011. Effects of land use on the level, variation and spatial structure of soil enzyme activities and bacterial communities. Soil Biology and Biochemistry 43:1464-1473.
  50. Witt C., Gaunt J.L., Galicia C.C., Ottow J.C.G., Neue H. 2000. A rapid chloroform-fumigation extraction method for measuring soil microbial biomass carbon and nitrogen in flooded rice soils. Biology and Fertility of Soils 30:510-519.
  51. Xiangmin F., Qingli W., Wangming Z., Wei Z., Yawei W., Lijun N. and Limin D. 2014. Land use effects on soil organic carbon, microbial biomass and microbial activity in Changbai mountains of northeast China. Chinese Geographical Science 24(3):297-306.
  52. Yana T., Yanga L., Campbell D. 2003. Microbial biomass and metabolic quotient of soils under different land use in the Three Gorges Reservoir area. Geoderma 115:129-138.
  53. Yao , He Z., Wilson M.J. and Campbell C.D. 2000. Microbial biomass and community structure in a sequence of soils with increasing fertility and changing land use. Microbial Ecology 40:223-237.
  54. Zhi-xin Y., Shu-qing L., Da-wei Z. and Sheng-dong F. 2006. Effects of cadium, zinc and land on soil enzyme activities. Journal of Environmental Sciences. 18(6):1135-1141.
  55. Zimmermann S. and Frey B. 2002. Soil respiration and microbial properties in an acid forest soil: Effects of wood ash. Soil Biology and Biochemistry 34:1727-1737.