جداسازی قارچ‌های حل کننده فسفات از خاک‌های ایران و بررسی خصوصیات محرک رشد گیاهی در آن‌ها

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترای گروه خاکشناسی، دانشگاه آزاد اسلامی واحد اصفهان (خوراسگان)

2 استادیار گروه خاکشناسی، دانشگاه ازاد اسلامی واحد اصفهان (خوراسگان)

3 دانشیار مؤسسه تحقیقات خاک و آب؛ سازمان تحقیقات، آموزش و ترویج کشاورزی

4 استادیار مؤسسه تحقیقات خاک و آب؛ سازمان تحقیقات، آموزش و ترویج کشاورزی

چکیده

کاربرد قارچ­های حل­کننده فسفات روشی بیولوژیک و دوست­دار محیط زیست جهت افزایش فسفر قابل استفاده خاک از منابع نامحلول آن است. هدف این مطالعه دستیابی به قارچ­های حل­کننده فسفات است که قابلیت ارائه به عنوان مواد بیولوژیک افزاینده فسفر قابل استفاده خاک و بهبود دهنده رشد گیاه را داشته باشند. در ابتدا ۱۴۴جدایه قارچ­های حل­کننده فسفات  از عمق صفر تا سی سانتی­متری مزارع ذرت در استان­های فارس، کرمانشاه و خراسان رضوی در ایران جدا شد. ۲۷ جدایه بیشترین توانایی انحلال تری کلسیم فسفات را داشتند. براساس آنالیزهای مولکولی، جدایه­ها متعلق به گونه­های مختلف چهار جنس­های قارچ Aspergillus (5/7 درصد)، قارچ Talaromyces (4/44 درصد)، قارچ Penicillium (4/44 درصد) و قارچ Cladophialophora (7/3 درصد) بودند. این اولین گزارش از توانایی انحلال فسفر معدنی در جنس قارچ Cladophialophora است. بیشترین توانایی انحلال فسفر در محیط جامد را قارچ Talaromayces pinophilus جدایه MFA داشت (نسبت قطر هاله به پرگنه 11/4 میلی­متر)، در حالیکه در محیط مایع به ترتیب و بدون اختلاف معنی­دار قارچ verruculosus Talaromayces جدایه PF 157-2 (۸/۲۳ میلی­گرم در لیتر)، قارچ Talaromayces pinophilus جدایه MFA (۷۲/۲۰ میلی­گرم در لیتر)، قارچtubingensis  Aspergillus جدایه PF 140-2 (۵۰/۲۰ میلی­گرم در لیتر) و قارچ  pinophilus Talaromayces جدایه 1FB (۰۴/۲۰ میلی­گرم در لیتر). بیشترین توانایی تولید اکسین (۲/۹ میلی­گرم در لیتر) و سیدروفور (نسبت قطر هاله به پرگنه 44/4 میلی­متر) را به ترتیب قارچtubingensis  Aspergillus جدایه PF 140-2 و قارچ  pinophilus Talaromayces جدایه 1FB  نشان دادند. بیشترین مقدار سیانید هیدروژن (درجه ۴) توسط قارچ Penicillium oxalicum جدایه PF 83-1 تولید شد. این نتایج پتانسیل قارچ­های حل­کننده فسفات جدا شده از خاک­های ایران به ویژه قارچ Talaromayces pinophilus جدایه MFA، قارچ verruculosus Talaromayces جدایه PF 157-2، قارچtubingensis  Aspergillus جدایه PF 140-2 و قارچ  pinophilus Talaromayces جدایه 1FB را در کاربرد به عنوان مواد بیولوژیک افزاینده فسفر قابل استفاده خاک و بهبود دهنده رشد گیاه تأیید می­کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Isolation and evaluation of plant growth-promoting characteristics of phosphate solubilizing fungi from Iranian soils

نویسندگان [English]

  • laleh Faridian 1
  • Jila Baharlouei 2
  • ali reza Fallah 3
  • Hossein Kari Dolatabad 4
1 PhD student of Soil Science Department, Islamic Azad University, Isfahan (Khorasgan) Branch
2 Assistant professor, Soil Science Department, Islamic Azad University, Isfahan (Khorasgan) Branch
3 Associate professor, Soil and Water Research Institute, Agricultural Research, Education and Extension Organization (AREEO)
4 Assistant professor, Soil and Water Research Institute, Agricultural Research, Education and Extension Organization (AREEO)
چکیده [English]

The application of phosphate solubilizing fungi (PSF) is a biological and eco-friendly method to increase phosphorus availability from insoluble sources. The aim of this study was to obtain PSFs that can be used as biological agent in order to increase soil phosphorus and improve plant growth. Initially, 144 PSFs isolates were isolated from the soil of corn fields (0-30 cm) in Fars, Kermanshah, and Khorasan Razavi provinces, Iran. Among them, 27 isolates showed the maximum solubilizing ability of tricalcium phosphate (TCP). Based on molecular analysis, different genera were identified as Aspergillus (7.5%), Talaromyces (44.4%), Penicillium (44.4%) and Cladophialophora (3.7%). This is the first report of Cladophialophora as mineral phosphorus solubilizing agent. The maximum phosphate solubilizing ability in solid media was represented by Talaromayces pinophilus strain MFA (hallo to colony diameter is 4.11 mm), whereas this ability was manifested by Talaromayces verruculosus strain PF 157-2 (23.8 mg/l), Talaromayces pinophilus strain MFA (20.7 mg/l), Aspergillus tubingensis strain PF 140-2 (20.50 mg/l) and Talaromayces pinophilus strain FB (20.04 mg/l) in liquid media respectively. Aspergillus tubingensis strain PF 140-2 and Talaromayces pinophilus strain 1FB showed the maximum auxin (9.2 mg/l) and siderophore (ratio of halo zone diameter to colony diameter: 4.44 mm) production ability respectively. The maximum amount of hydrogen cyanide (grade 4) was produced by Penicillium oxalicum strain PF 83-1. These results confirmed that PSF especially Talaromayces pinophilus strain MFA, Talaromayces verruculosus strain PF 157-2, Aspergillus tubingensis strain PF 140-2 and Talaromayces pinophilus strain 1FB can be introduced as biological agents which could increase soil phosphorus availability and improve plant growth.

کلیدواژه‌ها [English]

  • ‌‌Plant growth promotion
  • Phosphorus availability
  • Biological agents
  • and Phosphate Solubilizing Fungi
  1. طهماسبی، ف.، لکزیان، الف.، خاوازی، گ و پاکدین پاریزی، ع. ۱۳۹۳. جداسازی، شناسایی و ارزیابی تولید سیدروفور در باکتری­های سودوموناس و تأثیر آن بر رشد ذرت در محیط آبکشت. مجله پژوهش­های سلولی و مولکولی )مجله زیست شناسی ایران( . جلد ۷. شماره ۱.
  2. کاری دولت­آباد، ح.، اسدی رحمانی، ه و رجالی، ف. ۱۳۹۸. شناسایی و بررسی خصوصیات محرک رشدی و بیوکنترلی قارچهای اندوفیت جدا شده از برگ و میوه پسته.
  3. میرخانی، ف.، علایی، ح.، محمدی، ا.ح. و حقدل، م. 1395. شناسایی گونه­های غالب تریکودرما در باغات پسته­ی استان کرمان. نشریه حفاظت گیاهان. ۳۰ (۱):۸۲-۹۱.
  4. Alam, , Khalil, S., Ayub, N. Rashid, M. 2002. In vitro solu- bilization of inorganic phosphate by Phosphate Solubilizing Microorganisms (PSM) from Maize Rhizosphere. International Journal of Agriculture & Biology, vol. 4, pp. 454–458.
  5. Alexander, D. B. and Zuberer, D. A. 1991. Use of Chrome Azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biology and Fertility of Soils 12 (1):39-45.
  6. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D. J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25(17):3389-3402.
  7. Ameen, F., AlYahya, S. A., AlNadhari, S., Alasmari, H., Alhoshani, F. and Wainwright, M. 2019. Phosphate solubilizing bacteria and fungi in desert soils: species, limitations and mechanisms. Archives of Agronomy and Soil Science 65:1446-1459. org/10.1080/03650340.2019.1566713.
  8. Asghar, H. N., Zahir, Z. A. and Arshad, M. 2004. Screeninig rhizobacteria for improving the growth, yield, and oil content of canola (Brassica napus L.). Australian Journal of Agricultural research. 55: 187-194.
  9. Biglari, N., Hassan, H. M. and Amini, J. 2016. The ability of Streptomyces spp. isolated from Iranian soil to solubilize rock phosphate. Advances in Bioscience & Clinical Medicine 4 (3).
  10. Bononi, L., Chiaramonte, J. B., Pansa, C. C. and et al. 2020. Phosphorus-solubilizing Trichoderma spp. from Amazon soils improve soybean plant growth. scientific reports 10, 2858. doi.org/10.1038/s41598-020-59793-8.
  11. Chowdhary, K. and Sharma, S. 2020. Plant growth promotion and biocontrol potential of fungal endophytes in the inflorescence of Aloe vera L. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences 90:1045–1055. doi.org/10.1007/s40011-020-01173-3.
  12. Debasis, M., Snežana, A., Panneerselvam, P., Ansuman, S., Tanja, V., Ganeshamurthy, A. N., Manisha, Ch., Navendra, U., Bhaswatimayee, M and Radha, T. K. 2020. Phosphate-Solubilizing Microbes and Biocontrol Agent for Plant Nutrition and Protection: Current Perspective. Communications in Soil Science and Plant Analysis. Volume 51, Issue 5. doi.org/10.1080/00103624.2020.1729379.
  13. Doilom, M., Guo, J-W., Phookamsak, R., Mortimer, P. E., Karunarathna, S. C., Dong, W., Liao, C-F., Yan, K., Pem, D., Suwannarach, N., Promputtha, I., Lumyong, S. and Xu, J-C. 2020. Screening of phosphate-solubilizing fungi fromair and soil in Yunnan, China: four novel species in Aspergillus, Gongronella, Penicillium, and Talaromyces. Frontiers in microbiology 11:585215. doi: 10.3389/fmicb.2020.585215.
  14. Donate-Correa, J., Leon-Barrios, Mand Perez-Galdona, R. 2004. Screening for plant growth-promoting rhizobacteria in Chamaecytisus proliferus (tagasaste), a forage tree-shrub legume endemic to the Canary Island. Plant Soil 266:261-272.
  15. Doyle, J. J. and Doyle, J. L. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemistry 19:11-15.
  16. Durowade, K. A., Kolawole, O. M., Uddin, R. O and Enonbun, K. I. 2009. Isolation of Ascomycetous Fungi from a Tertiary Institution Campus Soil. Journal of Applied Sciences and Environmental Management, Vol. 12 )4(: 57-61.
  17. Elias, F., Woyessa, D. and Muleta, D. 2016. Phosphate solubilization potential of rhizosphere fungi isolated from plants in jimma zone, southwest Ethiopia. International Journal of Microbiology.
  18. Ferreira, C. M. H., Vilas‐Boas, A., Sousa, C. A, Soares, H. M. V. M. and Soares. E. V. 2019. Comparison of five bacterial strains producing siderophores with ability to chelate iron under alkaline conditions. AMB Express 9 (78).
  19. Gordon, S. A. and Weber, R. P. 1951. Colorimetric estimation of indoleacetic acid. Plant physiology 26(1): 192–195.
  20. Inaji, A., Okazawa, A., Taguchi, T., Nakamoto, M., Katsuyama, N., Yoshikawa, R., Ohnishi, T., Waller, F. and Ohta, D. 2020. Rhizotaxismodulation in arabidopsisis induced by diffusible compounds produced during the cocultivation of Arabidopsis and the endophytic fungus Serendipita indica. Plant and Cell Physiology 61:838–850.
  21. Indiragandhi, P., Anandham, R., Madhaiyan, M. and Sa, T. M. 2008. Characterization of plant growth- promoting traits of bacteria isolated from larval guts of diamondback moth Plutellaxylostella (Lepidoptera: Plutellidae). Current Microbiology 56:327–333.
  22. Jain, R., Saxena, J. and Sharma, V. 2017. The ability of two fungi to dissolve hardly soluble phosphates in solution. Mycology 8 (2) :104 – 110 https://doi.org/10.1080/21501203.2017.1314389.
  23. Katiyar, D., Hemantaranjan, A. and Dwivedi, P. 2018. Plant growth promoting rhizobacteria and their roles as fungal biocontrol agents: An overview. Journal of Plant Science and Research 34:127–136.
  24. Kuhad, R. C., Singh, S., Lata. and Singh, A. 2011. Phosphate-solubilizing microorganisms. In: Singh A, Parmar N, Kuhad RC, editors. Bioaugmentation, biostimulation and biocontrol. chapter 4. Berlin, Heidelberg: Springer. 65-84.
  25. Meents, A. K., Furch, A. C. U., Almeida-Trapp, M., Özyürek, S.,  Scholz, S. S., Kirbis, A., Lenser, T., Theißen, G., Grabe, V., Hansson,. Mithöfer, A. and Oelmüller, R. 2019. Beneficial and pathogenic arabidopsisroot-interacting fungi differently affect auxin levels and responsive genes during early infection. Frontiers in microbiology 10:380. doi.org/10.3389/fmicb.2019.00380.
  26. Mendez, J. 2014. Characterization of phosphate-solubilizing bacteria isolated from the arid soils of a semi-desert region of north-east Mexico. Biological Agriculture & Horticulture 30(3):211–217.
  27. Naziya, B., Murali, M. and Amruthesh, K. N. 2020. Plant growth-promoting fungi (PGPF) instigate plant growth and induce disease resistance in Capsicum annuum L. upon infection with Colletotrichum capsici (Syd.) Butler &Bisby. Biomolecules 10(41). doi:10.3390/biom10010041.
  28. Nesme, T., Metson, G. S. and Bennett, E. M. 2018. Global P flows through agricultural trade. Global Environmental Change 50:133–141. doi: 10.1016/j.gloenvcha.2018.04.004.
  29. Prasad, M. R., Sagar, B. V., Devi, G. U., Triveni, S., Rao, S. R. K. and Chari, K. D. 2017. Isolation and Screening of Bacterial and Fungal Isolates for Plant Growth Promoting Properties from Tomato (Lycopersicon esculentum Mill.). International Journal of Current Microbiology and Applied Sciences 6 (8):753-761.
  30. Potshangbam, M., Dev, S. I., Sahoo, D. and Strobel, G. A. 2017. Functional characterization of endophytic fungal community associ- ated with Oryza sativa L. and Zea mays L. Frontiers in Microbiology 8:325.
  31. Qiao, Huan., Sun, Xiao-Rui., Wu, Xiao-Qin., Li, Gui-E., Wang, Zao. and Li, De-Wei. 2019. The phosphate-solubilizing ability of Penicillium guanacastense and its effects on the growth of Pinus massoniana in phosphate-limiting conditions. Biology Open 8 (11): bio046797. doi.org/10.1242/bio.046797.
  32. Raval, A. and Desai, P. 2015. Screening and characterization of several siderophore producing bacteria as plant growth promoters and biocontrolling agents. International Journal of Pharma and Bio Sciences 6(10):4803-4811.
  33. Rijavec, T. and Lapanje, A. 2016. Hydrogen cyanide in the rhizosphere: Not suppressing plant pathogens, but rather regulating availability of phosphate. Frontier in Microbiology 7:1785. doi: 10.3389/fmicb.2016.01785.
  34. Saitou, N. and Nei, M. 1987. The neighbour-joining method: a new method for reconstruction of phylogenetic trees. Molecular Biology and Evolution 4:406–425.
  35. Selvi, K. B., Paul, JJ. A., Vijaya, V. and et al. 2017. Analyzing the efficacy of phosphate solubilizing microorganisms by enrichment culture techniques. Biochemistry and Molecular Biology 3:1.
  36. Silva, M. G., de Curcio, J. S., Silva-Bailão, M. J. and et al. 2020. Molecular characterization of siderophore biosynthesis in Paracoccidioides brasiliensis. IMA Fungus 11:11. doi: 10.1186/s43008-020-00035-x.
  37. Sperber, J. I. 1958. The incidence of apatite-solubilizing organisms in the rhizosphere and soil. Australian Journal of Agricultural Research 9:778-781.
  38. Szkop, M. and Bielawski, W. 2013. A simple method for simultaneous RP-HPLC determination of indolic compounds related to bacterial biosynthesis of indole-3-acetic acid. Antonie van Leeuwenhoek. 103:683–691.
  39. Tian, J., Ge, F., Zhang, D., Deng, S. and Liu, X. 2021. Roles of phosphate solubilizing microorganisms from managing soil phosphorus deficiency to mediating biogeochemical P cycle. Biology10, 158.
  40. Varalakshmi, P. and Malliga, P. 2012. Evidence for production of Indole-3-acetic acid from a fresh water cyanobacteria (Oscillatoria annae) on the growth of H. annus. International Journal of Scientific and Research Publications, 2(3):1-15.
  41. Viruel, E., Lucca, M. E. and Sin ̃eriz, F. 2011. Plant growth promotion traits of phosphobacteria isolated from Puna, Argentina. Archives of Microbiology 193:489–496.
  42. Wang, X., Wang., C., Sui, J., Liu, Z., Li, Q., Ji, C. and et al. 2018. Isolation and characterization of phosphofungi, and screening of their plant growth-promoting activities. Amb Express 8, 63. 1186/s13568-018-0593-4.
  43. White, T. J., Bruns, T., Lee, S. J. W. T. and Taylor, J. W. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols: a Guide to Methods and Applications 18(1):315-322.
  44. Yadav, J., Verma, J. P. and Tiwari, K. N. 2011. Plant growth promoting activities of fungi and their effect on chickpea plant growth. Asian Journal of Biological Sciences 4:291-299.