پیامد کاربرد پادزیست‌های آموکسی‌سیلین، سفیکسیم و مترونیدازول بر فراوانی و سوخت و ساز باکتری‌ها در خاک‌های آلوده و ناآلوده به فلزهای سنگین

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه خاکشناسی، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران

2 دانشگاه بوعلی سینا

چکیده

هدف ازاین ‌پژوهش بررسی پیامد سه ‌پادزیست پرکاربرد آموکسی‌سیلین، سفیکسیم و مترونیدازول بر ویژگی‌های ‌زیستی چون تنفس‌پایه و برانگیخته، و شمار همه ‌باکتری‌ها درخاک‌های ‌‌آلوده و ناآلوده به فلزهای‌‌ سنگین است. آزمایش با طرح کامل ‌تصادفی به ‌گونه‌ فاکتوریل با سه‌ تکرار انجام ‌شد. فاکتورهای این‌ پژوهش، خاک در سه ‌گونه (خاک ‌آلوده‌ معدن، خاک‌ چراگاه ‌نزدیک ‌معدن و خاک ‌ناآلوده‌ کشاورزی)، پادزیست در هفت ‌تیمار (گواه ‌بدون ‌پادزیست، آموکسی‌سیلین، سفیکسیم و مترونیدازول هریک به‌اندازه 100و200میلی‌گرم ‌درکیلوگرم خاک‌خشک) و زمان در سه‌ بازه (گرماگذاری ‌کوتاه‌ مدت (صفر تا7 روز)، میان ‌مدت ( 15و  30روز) و بلندمدت (60و90روز)) بودند. یافته‌های این‌پژوهش نشان ‌داد که دربازه ‌زمانی میان‌ مدت، کاربرد  200میلی‌گرم ‌در کیلوگرم ازپادزیست‌های آموکسی‌سیلین در خاک‌ کشاورزی و مترونیدازول در خاک ‌معدن، به ‌دنبال‌ هم بیش‌ترین (4958/8) و کم‌ترین (4594/4) لگاریتم ‌فراوانی همه ‌باکتری‌های خاک را نشان ‌دادند. خاک ‌چراگاه در گرماگذاری ‌کوتاه ‌مدت بیش‌ترین‌ اندازه تنفس‌پایه (1066/0میلی‌گرم دی‌اکسیدکربن در گرم خاک‌ خشک در روز) و خاک ‌کشاورزی در هر دو بازه‌ زمانی بلند‌مدت (0144/0) و میان‌مدت (0172/0) کم‌ترین‌اندازه تنفس‌پایه را داشت. کاربرد 100میلی‌گرم مترونیدازول در کیلوگرم خاک‌ چراگاه دربازه‌ زمانی کوتاه‌مدت بیش‌ترین ‌اندازه تنفس ‌برانگیخته خاک (0251/0 میلی‌گرم دی‌اکسیدکربن در گرم خاک‌ خشک در ساعت) و کاربرد 100میلی‌گرم آموکسی‌سیلین در کیلوگرم خاک‌ کشاورزی دربازه‌ زمانی میان‌مدت کم‌ترین تنفس‌ برانگیخته خاک (0027/0) را نشان‌ داد. به ‌بیان ‌دیگر می‌توان‌ گفت خاک‌ کشاورزی بیش‌ترین‌ فراوانی باکتری‌ها و خاک‌ معدن بیش‌ترین ‌اندازه تنفس ‌برانگیخته را نشان ‌داد. خاک ‌چراگاه بیش‌ترین ‌اندازه تنفس‌پایه را داشت و با خاک‌ کشاورزی در فراوانی باکتری‌ها و خاک ‌معدن در اندازه تنفس ‌برانگیخته ناهمانندی معنی داری نداشت. خاک‌ معدن کم‌ترین ‌فراوانی باکتری‌ها و خاک‌ کشاورزی کم‌ترین ‌اندازه تنفس‌پایه و برانگیخته را نشان داد. کاربرد مترونیدازول بیش‌ترین ‌اندازه تنفس‌پایه و برانگیخته، و کم‌ترین ‌فراوانی باکتری‌ها را در پی‌‌داشت. کاربرد آموکسی‌سیلین و سفیکسیم به‌ دنبال ‌هم بیش‌ترین ‌فراوانی باکتری‌ها و کم‌ترین ‌اندازه تنفس‌ برانگیخته رانشان ‌داد. گرماگذاری دربازه‌زمانی کوتاه‌ مدت بیش‌ترین ‌اندازه‌های تنفس ‌پایه و برانگیخته راداشت. بیش‌ترین‌ فراوانی باکتری‌ها و کم‌ترین‌اندازه تنفس ‌برانگیخته در زمان میان ‌مدت دیده‌ شد. بازه ‌زمانی بلندمدت کم‌ترین ‌فراوانی باکتری‌ها و کم‌ترین‌اندازه‌ی تنفس‌پایه را نشان ‌داد.

کلیدواژه‌ها


عنوان مقاله [English]

The consequence of Amoxicillin, Cefixime, and metronidazole application on abundance and metabolism of bacteria in uncontaminated and heavy metal-contaminated soils

نویسندگان [English]

  • ziba najafzadeh nobar 1
  • ali akbar safari sinegani 2
1 Soil Science College of Agriculture Bu-Ali University Hamadan Iran
2 Soil Science College of Agriculture Bu-Ali Sina University Hamadan Iran
چکیده [English]

This study aimed to investigate the effect of Amoxicillin, Cefixime, and Metronidazole on some biological properties such as basal respiration, substrate-induced respiration, and bacterial abundance in uncontaminated and heavy metal-contaminated soils. The experiment has performed with a completely randomized factorial design with three replications. Factors include three soil types (heavy metal contaminated mine soil, rangeland soil near mine, and agricultural soil), seven antibiotic treatments (control, Amoxicillin, Cefixime, and Metronidazole, each one 100 and 200 mg per kg of dry soil) and three incubation times: short-time (zero-7 days), medium-time (15 and 30 days) and long-time (60 and 90 days)). The results showed that in the medium time, the application of 200 mg.kg-1 of antibiotics amoxicillin in agricultural soil and metronidazole in mine soil, resulted in the highest (8.4958) and lowest (4.4594) logarithm of the abundance of all soil bacteria. Rangeland soil had the highest basal respiration amount (0.1066 mg CO2. g-1dry soil. day-1) in short-time incubation, and agricultural soil had the lowest basal respiration amount in both long-time (0.0144) and medium-time (0.0172). The use of 100 mg of metronidazole per kg of rangeland soil in the short time resulted in the highest amount of substrate-induced respiration (0.0251 mg CO2. g-1 dry soil. h-1) and the use of 100 mg of amoxicillin per kg of agricultural soil in the medium incubation time resulted in the lowest substrate-induced respiration (0.0027). It seems that agricultural soil showed the highest abundance of bacteria and mine soil showed the highest amount of substrate-induced respiration. Rangeland soil had the highest amount of basal respiration and there was no significant difference with agricultural soil in the abundance of bacteria and mine soil in the amount of substrate induced respiration. Mine soil showed the lowest abundance of bacteria and agricultural soil showed the lowest amount of basal and substrate induced respiration. The application of metronidazole resulted in the highest amount of basal and substrate induced respiration, and the lowest abundance of bacteria. The application of amoxicillin and Cefixime showed the highest abundance of bacteria and the lowest amount of substrate induced respiration, respectively. Incubation in a short time had the highest amount of basal and substrate induced respiration. The highest abundance of bacteria and the lowest amount of substrate induced respiration were observed in the medium time. The long-time incubation showed the lowest abundance of bacteria and the lowest basal respiration amount.

کلیدواژه‌ها [English]

  • Antibiotic
  • Bacterial Abundance
  • Basal and Substrate Induced Respiration
  1. رشتبری، م. 1399. پیامد کاربرد پادزیست‌ها و بهسازهای بیوچار و نانوزئولیت بر کارکرد ریزجانداران خاک و برهمکنش‌های زیستی گیاه نخود (Cicer arietinum L.). رساله دکتری تخصصی رشته علوم خاک- بیولوژی و بیوتکنولوژی خاک، گروه آموزشی علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران.
  2. صفری سنجانی، ع.ا.، شریفی، ز.، صفری سنجانی، م. 1389. روش‌های آزمایشگاهی در میکروبیولوژی. انتشارات دانشگاه بوعلی سینا، 562 صفحه.
  3. Alef, K. Nannipieri, P. 1995. Methods in applied soil microbiology and biochemistry. Academic press.
  4. Alexy, R. Kümpel, T. and Kümmerer, K. 2004. Assessment of degradation of 18 antibiotics in the closed bottle test. Chemosphere 57(6):505-512.
  5. Aminiyan, M. M., Hosseini, H., and Heydariyan, A. 2018. Microbial communities and their characteristics in a soil amended by nanozeolite and some plant residues: Short time in-situ incubation. Eurasian Journal of Soil Science 7(1):9-19.
  6. Ananyeva, N.D. Susyan, E.A. Chernova, O.V. and Wirth, S. 2008. Microbial respiration activities of soils from different climatic regions of European Russia. Eur. J. Soil Biol 44:147–157.
  7. Anderson, J.P.E. and Domsch, K.H. 1978. A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biol. Biochem 10(3):215–221.
  8. Binh, C. T. T. Heuer, H. Gomes, N. C. M. Kotzerke, A. Fulle, M. Wilke, B. M. ... and Smalla, K. 2007. Short-term effects of amoxicillin on bacterial communities in manured soil. FEMS microbiology ecology 62(3):290-302.
  9. Blackwell, P. A. Boxall, A. B. Kay, P. and Noble, H. 2005. Evaluation of a lower tier exposure assessment model for veterinary medicines. Journal of agricultural and food chemistry 53(6):2192-2201.
  10. Bouguerra, S. Gavina, A. Natal-da-Luz, T. Sousa, J. P. Ksibi, M. and Pereira, R. 2022. The use of soil enzymes activity, microbial biomass, and basal respiration to assess the effects of cobalt oxide nanomaterial in soil microbiota. Applied Soil Ecology 169:104246.
  11. Bower, C. A. Reitemeier, R. F. and Fireman, M. 1952. Exchangeable cation analysis of saline and alkali soils. Soil science 73(4):251-262.
  12. Butler, E. Whelan, M. J. Ritz, K. Sakrabani, R. and Van Egmond, R. 2011. Effects of triclosan on soil microbial respiration. Environmental Toxicology and Chemistry 30(2):360-366.
  13. Čermák, L. Kopecký, J. Novotná, J. Omelka, M. Parkhomenko, N. Plháčková, K. and Ságová-Marečková, M. 2008. Bacterial communities of two contrasting soils reacted differently to lincomycin treatment. Applied soil ecology 40(2):348-358.
  14. Ciğeroğlu, Z. Küçükyıldız, G. Erim, B. and Alp, E. 2021. Easy preparation of magnetic nanoparticles-rGO-chitosan composite beads: Optimization study on cefixime removal based on RSM and ANN by using Genetic Algorithm Approach. Journal of Molecular Structure 1224,129182.
  15. Conkle, J. L. and White, J. R. 2012. An initial screening of antibiotic effects on microbial respiration in wetland soils. Journal of Environmental Science and Health 47(10):1381–1390.
  16. Cordova-Kreylos, A. L. and Scow, K. M. 2007. Effects of ciprofloxacin on salt marsh sediment microbial communities. The ISME journal 1(7):585-595.
  17. de Souza, M.J. Nair, S. Loka Bharathi, P.A. and Chandramohan, D. 2006. Metal and antibiotic-resistance in psychrotrophic bacteria from Antarctic marine waters. Ecotoxicology 15(4):379–384.
  18. Ding, C. and He, J. 2010. Effect of antibiotics in the environment on microbial populations. Applied microbiology and biotechnology 87(3):925-941.
  19. Doelman, P. and Haanstra, L. Short-term and long-term effects of Cd, Cr, Cu, Ni, Pb, and Zn on microbial respiration in relation to abiotic soil factors. Plant Soil 79:317-321.
  20. Dupont, C. L. Grass, G. and Rensing, C. 2011. Copper toxicity and the origin of bacterial resistance—new insights and applications. Metallomics 3(11):1109-1118.
  21. Gee, G. W. and Bauder, J. W. 1986. Particle-size analysis. p.383–411. A. Klute (ed.) Methods of soil analysis. Part 1. Agron. Monogr. 9. ASA and SSSA, Madison, WI. Particle-size analysis p:383–411. In A. Klute (ed.) Methods of soil analysis. Part 1. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI.
  22. Hammesfahr, U. Heuer, H. Manzke, B. Smalla, K. and Thiele-Bruhn, S. 2008. Impact of the antibiotic sulfadiazine and pig manure on the microbial community structure in agricultural soils. Soil Biology and Biochemistry 40(7):1583-1591.
  23. Helrich, K. 1990. Official methods of analysis of the Association of Official Analytical Chemists. Association of official analytical chemists.
  24. Heuer, H. and Smalla, K. 2007. Manure and sulfadiazine synergistically increased bacterial antibiotic resistance in soil over at least two months. Environmental microbiology 9(3):657-666.
  25. Heydari, A. Kim, N. D. Horswell, J. Gielen, G. Siggins, A. Taylor, M. ... and Palmer, B. R. 2022. Co-Selection of Heavy Metal and Antibiotic Resistance in Soil Bacteria from Agricultural Soils in New Zealand. Sustainability 14(3):1790.
  26. Hirsch, R. Ternes, T. Haberer, K. and Kratz, K. L. 1999. Occurrence of antibiotics in the aquatic environment. Science of the Total environment 225(1-2):109-118.
  27. Hund-Rinke, K. Simon, M. and Lukow, T. 2004. Effects of tetracycline on the soil microflora: function, diversity, resistance. Journal of Soils and Sediments 4(1):11-16.
  28. Klimek, B. 2012. Effect of long-term zinc pollution on soil microbial community resistance to repeated contamination. Bulletin of environmental contamination and toxicology 88(4):617-622.
  29. Klute, A. 1986. Water retention: laboratory methods. Methods of soil analysis: Part 1 Physical and mineralogical methods 5:635-662.
  30. Kong, W.D. Zhu, Y.G. Fu, B.J. Marschner, P. and He, J.Z. 2006. The veterinary antibiotics oxytetracycline and Cu influence functional diversity of the soil microbial community. Environ. Pollut 143(1):129–137.
  31. Kotzerke, A. Sharma, S. Schauss, K. Heuer, H. Thiele-Bruhn, S. Smalla, K. ... and Schloter, M. 2008. Alterations in soil microbial activity and N-transformation processes due to sulfadiazine loads in pig-manure. Environmental Pollution 153(2):315-322.
  32. Kummerer, K. 2009. Antibiotics in the aquatic environment - A review - Part I. Chemosphere 75:417–434.
  33. Lamshöft, M. Sukul, P. Zühlke, S. and Spiteller, M. 2010. Behaviour of 14C-sulfadiazine and 14C-difloxacin during manure storage. Science of the Total Environment 408(7):1563-1568.
  34. Leita, L. Denobili, M. Muhlbachova, G. Mondini, C. Marchiol, L. and Zerbi, G. 1995. Bioavailability and effects of heavy metals on soil microbial biomass survival during laboratory incubation. Biol Fertil Soils 19:103–109.
  35. Li, L. G. Xia, Y. and Zhang, T. 2017. Co-occurrence of antibiotic and metal resistance genes revealed in complete genome collection. The ISME journal 11(3):651-662.
  36. Li, N. Chen, J. Liu, C. Yang, J. Zhu, C. and Li, H. 2022. Cu and Zn exert a greater influence on antibiotic resistance and its transfer than doxycycline in agricultural soils. Journal of Hazardous Materials 423:127042.
  37. Liu, F. Ying, G.G. Tao, R. Jian-Liang, Z. Yang, J.F. and Zhao, L.F. 2009. Effects of six selected antibiotics on plant growth and soil microbial and enzymatic activities. Environ. Pollut 157:1636–1642.
  38. Loeppert, R. H. and Suarez, D. L. 1996. Carbonate and gypsum. Methods of soil analysis Part 3:437-474.
  39. Lu, X. M. and Lu, P. Z. 2019. Distribution of antibiotic resistance genes in soil amended using Azolla imbricata and its driving mechanisms. Science of The Total Environment 692:422-431.
  40. Marabottini, R. Stazi, S. R. Papp, R. Grego, S. and Moscatelli, M. C. 2013. Mobility and distribution of arsenic in contaminated mine soils and its effects on the microbial pool. Ecotoxicology and environmental safety 96:147-153.
  41. Martinez, J. L. 2009. Environmental pollution by antibiotics and by antibiotic resistance determinants. Environmental pollution 157(11):2893-2902.
  42. Montforts, M. H. Kalf, D. F. van Vlaardingen, P. L. and Linders, J. B. 1999. The exposure assessment for veterinary medicinal products. Science of the total environment 225(1-2):119-133.
  43. Murphy, J. A. M. E. S. and Riley, J. P. 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica chimica acta 27:31-36.
  44. Ostermann, A. Gao, J. Welp, G. Siemens, J. Roelcke, M. Heimann, L. ... and Amelung, W. 2014. Identification of soil contamination hotspots with veterinary antibiotics using heavy metal concentrations and leaching data—a field study in China. Environmental monitoring and assessment 186(11):7693-7707.
  45. Oves, M. and Hussain, F. M. 2016. Antibiotics and heavy metal resistance emergence in water borne bacteria. J Investig Genomics 3(2).
  46. Parveen, S. Taranum, R. and Mittapally, S. 2018. Metal ions as antibacterial agents. J. Drug Deliv. Ther 8:411-419.
  47. Pasamontes, A. and Callao, M. P. 2006. Sequential injection analysis for the simultaneous determination of clavulanic acid and amoxicillin in pharmaceuticals using second-order calibration. Analytical sciences 22(1):131-135.
  48. Rhoades, J. D. 1996. Salinity: Electrical conductivity and total dissolved solids. Methods of soil analysis: Part 3 Chemical methods 5:417-435.
  49. Romero-Freire, A. Sierra Arag´on, M. Martínez Garz´on, F.J. and Martín Peinado, F.J. 2016. Is soil basal respiration a good indicator of soil pollution? Geoderma 263:132–139.
  50. Safari Sinegani, A. A. and Younessi, N. 2017. Antibiotic resistance of bacteria isolated from heavy metal-polluted soils with different land uses. Journal of global antimicrobial resistance 10:247-255.
  51. Sager M. 2007. Trace and nutrient elements in manure, dung and compost samples in Austria. Soil Biology and Biochemistry 39:1383–1390.
  52. Samanta, A. Bera, P. Khatun, M. A. H. A. M. U. D. A. Sinha, C. Pal, P. Lalee, A. and Mandal, A. 2012. An investigation on heavy metal tolerance and antibiotic resistance properties of bacterial strain Bacillus sp. isolated from municipal waste. Journal of Microbiology and Biotechnology Research 2(1):178-189.
  53. Sepehr, M. N. Al-Musawi, T. J. Ghahramani, E. Kazemian, H. and Zarrabi, M. 2017. Adsorption performance of magnesium/aluminum layered double hydroxide nanoparticles for metronidazole from aqueous solution. Arabian Journal of Chemistry 10(5):611-623.
  54. Seiler, C. and Berendonk, T. U. 2012. Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture. Frontiers in microbiology 3:399.
  55. Sierra, J. Roig, N. Marti, E. Nadal, M. and Schuhmacher, M. 2012. Amendment of soils with composted sewage sludge. Long term effects on C and N transformation. In: Trasar- Cepeda, C. Hernandez, T. Garcia, C. Gonzalez-Carcedo, S. (Eds.), Soil Enzymology in the Recycling of Organic Wastes and Environmental Restoration. Springer-Verlag, Dordrecht, London, New York pp:51–62.
  56. Sinegani, A. A. S. and Younessi, N. 2017. Antibiotic resistance of bacteria isolated from heavy metal-polluted soils with different land uses. Journal of global antimicrobial resistance 10:247-255.
  57. Sukul, P. Lamshöft, M. Kusari, S. Zühlke, S. and Spiteller, M. 2009. Metabolism and excretion kinetics of 14C-labeled and non-labeled difloxacin in pigs after oral administration, and antimicrobial activity of manure containing difloxacin and its metabolites. Environmental research 109(3):225-231.
  58. Tai, D. T. Ngan, M. H. K. Hung, C. K. Thu, N. N. A. and Nhi, N. T. N. 2022. The impact of heavy metals to bacterial tolerance of antibiotic resistance and growth in the aquatic environment of Vietnam. Infect Dis Res 3(1):1.
  59. Tang, Q. Xia, L. Ti, C. Zhou, W. Fountain, L. Shan, J. and Yan, X. 2020. Oxytetracycline, copper, and zinc effects on nitrification processes and microbial activity in two soil types. Food and Energy Security 9(4):e248.
  60. Thiele‐Bruhn, S. 2003. Pharmaceutical antibiotic compounds in soils–a review. Journal of plant nutrition and soil science 166(2):145-167.
  61. Thiele‐Bruhn, S. 2005. Microbial inhibition by pharmaceutical antibiotics in different soils—dose‐response relations determined with the iron (III) reduction test. Environmental Toxicology and Chemistry: An International Journal 24(4):869-876.
  62. Thiele-Bruhn, S. and Beck, I. C. 2005. Effects of sulfonamide and tetracycline antibiotics on soil microbial activity and microbial biomass. Chemosphere 59(4):457-465.
  63. Thomas, G. Sparks, D. Page, A. Helmke, P. Loeppert, R. Soltanpour, P. Tabatabai, M. Johnston, C. and Sumner, M. 1996. "Soil pH and soil acidity. Methods of soil analysis Part 3-chemical methods" SSSA Book Series 5.3 pp:475-490.
  64. Tobor-Kapłon, M. A. Bloem, J. Romkens, P. F. and Ruiter, P. D. 2005. Functional stability of microbial communities in contaminated soils. Oikos 111(1):119–129.
  65. Tongyi, Y. Yanpeng, L. Xingang, W. Fen, Y. Jun, L. and Yubin, T. 2020. Co‐selection for antibiotic resistance genes is induced in a soil amended with zinc. Soil Use and Management 36(2):328-337.
  66. Umer, M. I. and Rajab, S. M. 2012. Correlation between aggregate stability and microbiological activity in two Russian soil types. Eurasian journal of soil science 1(1):45-50.
  67. Ute, H. Holge, H. Bert, M. Kornelia, S. and Sِren, T.B. 2008. Impact of the antibiotic sulfadiazine and pig manure on the microbial community structure in agricultural soils. Soil Biol. Biochem 40(7):1583–1591.
  68. Walkley, A. and Black, I. A. 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil science 37(1):29-38.
  69. Wang, C. Ding, Y. Teppen, B. J. Boyd, S. A. Song, C. and Li, H. 2009. Role of interlayer hydration in lincomycin sorption by smectite clays. Environmental science & technology 43(16):6171-6176.
  70. Xu, Y. Yu, W. Ma, Q. and Zhou, H. 2013. Accumulation of copper and zinc in soil and plant within ten-year application of different pig manure rates. Plant, soil and environment 59(11):492-499.
  71. Xu, Y. Yu, W. Ma, Q. and Zhou, H. 2015. Occurrence of (fluoro) quinolones and (fluoro) quinolone resistance in soil receiving swine manure for 11 years. Science of the Total Environment 530:191-197.
  72. Xu, Y. Yu, W. Ma, Q. Wang, J. Zhou, H. and Jiang, C. 2016. The combined effect of sulfadiazine and copper on soil microbial activity and community structure. Ecotoxicology and environmental safety 134:43-52.
  73. Zhang, Q. Q. Ying, G. G. Pan, C. G. Liu, Y. S. and Zhao, J. L. 2015. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance. Environmental science & technology 49(11):6772-6782.
  74. Zhang, X. Zhang, X. Li, L. Fu, G. Liu, X. Xing, S. ... and Chen, B. 2022. The toxicity of hexavalent chromium to soil microbial processes concerning soil properties and aging time. Environmental Research 204:111941.
  75. Zhao, Y. Cocerva, T. Cox, S. Tardif, S. Su, J. Q. Zhu, Y. G. and Brandt, K. K. 2019. Evidence for co-selection of antibiotic resistance genes and mobile genetic elements in metal polluted urban soils. Science of the Total Environment 656:512-520.
  76. Zielezny, Y. Groeneweg, J. Vereecken, H. and Tappe, W. 2006. Impact of sulfadiazine and chlorotetracycline on soil bacterial community structure and respiratory activity. Soil Biology and Biochemistry 38(8):2372-2380.