اثرات نانو/میکروپلاستیک‌ها به‌عنوان آلاینده‌های نوشناخته بر محیط‌زیست و نقش جامعه میکروبی در تجزیه آنها

نوع مقاله : مقاله مروری

نویسنده

استاد دانشگاه علوم کشاورزی و منابع طبیعی خوزستان

چکیده

انباشت فزاینده زباله‌های پلاستیکی یکی از چالش‌های اصلی زیست‌محیطی است که در حال حاضر جوامع بشری با آن مواجه هستند. سمیت زیست‌محیطی نانو/میکروپلاستیک‌ها به عنوان آلاینده‌های نوشناخته یک تهدید دائمی برای زیست‌بوم‌های زمینی، دریایی و جوی می‌باشد. ذرات ‌نانوپلاستیک به خوبی قادرند از غشاء سلولی عبور کرده و به درون سلول وارد شوند و کلیه اعمال حیاتی موجودات زنده از جمله انسان، گیاهان و ریز‌جاندران را مختل نمایند. نانو/میکروپلاستیک‌ها به دلیل مقاومت در برابر تجزیه به ‌عنوان یک بحران جدی جهانی محسوب می‌شوند. لذا تاکنون تلاش‌های زیادی جهت حذف یا کاهش ذرات نانو/میکروپلاستیک‌ها، از طریق فناوری‌های زیستی که از نظر اقتصادی مقرون به‌صرفه و نیز سازگار با محیط‌زیست است صورت گرفته شده است. توانایی آنزیم‌های زیستی در کاتالیز نمودن پلی‌مرهای پلاستیک به عنوان یک جایگزین کارآمد و پایدار برای پالایش و بازیافت پلاستیک مورد ارزیابی قرار گرفته شده است. انواع مختلفی از آنزیم‌های تجزیه کننده پلاستیک از جامعه میکروبی تاکنون کشف شده است. با این وجود، آنزیم‌های تجزیه کننده پلاستیک به طور طبیعی برای تجزیه پلاستیک مصنوعی در کاربردهای صنعتی به دلیل پایداری حرارتی ضعیف و فعالیت کاتالیزوری کم مناسب نیستند. بنابراین، کاوش در محیط‌های گوناگون برای کشف آنزیم‌های جدید تجزیه‌کننده پلاستیک با ویژگی‌ها و عملکردهای مطلوب، به‌طور فزاینده مورد توجه قرار گرفته است. در رویکرد زیستی، تجزیه نانو/میکروپلاستیک‌ها، افزایش بازده دپلیمریزاسیون و بهینه‌سازی فعالیت و پایداری حرارتی آنزیم‌های دخیل که به شیوه‌های گوناگون بررسی شده‌اند در این مقاله نیز مورد اشاره و بحث قرار می‌گیرند. علاوه بر این، تلاش‌های تحقیقاتی اخیر پیشرفت‌های قابل‌توجهی در کشف و مهندسی آنزیم‌های تجزیه‌کننده پلاستیک داشته‌اند که نوید بزرگ در تصفیه پایدار پلاستیک از طریق  تجزیه زیستی را نشان می‌دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effects of nan/microplastics as newly known pollutants on the environment and their microbial degradation

نویسنده [English]

  • Habiballah Nadian Ghomsheh
Professor, Agricultural Sciences and Natural Resources University of Khozestan
چکیده [English]

The increasing accumulation of plastic waste is one of the main environmental challenges currently facing human societies. Environmental toxicity of nano∕microplastics as newly known pollutants is a constant threat to terrestrial, marine, and atmospheric ecosystems. Nanoplastics are well able to pass through cell membranes and enter the cell, disrupting all vital functions of living organisms, including humans, plants, and microorganisms. Nano∕microplastics are considered a serious global pollutant due to their resistance to decomposition. Therefore, increasing efforts have been made to eliminate or reduce nano∕microplastics through eco-friendly technologies. Bio-enzymes have been evaluated as efficient agents for plastic degradation. A variety of plastic-degrading enzymes have been discovered among microbial communities. However, naturally occurring plastic degrading enzymes are not suitable for synthetic plastic degradation due to poor thermos-stability and low catalytic activity. Therefore, exploration in various environments to discover new plastic-degrading enzymes with desirable properties and functions has been increasingly considered. In the biological approach, the decomposition of nano/microplastics, increasing the efficiency of depolymerization, and optimizing the activity and thermal stability of the enzymes involved, have been investigated in various ways. Recent research efforts have made significant progress in discovering and engineering plastic decomposing enzymes, showing great promise for the suitable treatment for plastics biodegradation.

کلیدواژه‌ها [English]

  • Bioremediation
  • Enzyme engineering
  • Marine and terrestrial ecosystems
  • Nano/micro plastic polymers
  • Oxidative stresses
  1. Abhijit, N., Shirke, A.N., White, C., Englaender, J.A., Zwarycz, A., Glenn, L., Butterfoss, G.L., Robert, J., Linhardt, R.J., Richard, A. and Gross, R.A. 2018. Stabilizing leaf and branch compost cutinase (LCC) with glycosylation: Mechanism and effect on PET hydrolysis. Biochemistry 57: 1190−1200. doi: 10.1021/acs.biochem.7b01189.
  2. Albertsson, A-C. and Banhidi, Z.G. 1980. Microbial and oxidative effects in degradation of PE. Applied Polymer Science 25 (8): 1655-1671, https://doi.org/10.1002/app.1980.070250813.
  3. Albertsson, A-C. 1978. Biodegradation of synthetic polymers. II. A limited microbial conversion of 14C in polyethylene to 14CO2 by some soil fungi. Applied Polymer Science 22 (12): 3419-3433, https://doi.org/10.1002/app.1978.070221207.
  4. Araujo, R., Silva, C., O'Neill, A., Micaelo, N. and Guebitz, G. Tailoring cutinase activity towards polyethylene terephthalate and polyamide fibers. Journal of Biotechnology 128: 849–857. doi:10.1016/j.jbiotec.2006.12.028.
  5. Arpia, A.A., Chen, W.H., Ubando, A.T., Naqvi, S.R. and Culaba, A.B. 2021. Microplastic degradation as a sustainable concurrent approach for producing biofuel and obliterating hazardous environmental effects: A state-of-the-art review. Journal of Hazardous Materials 418:126381. https://doi.org/10.1016/j.jhazmat.2021.126381.
  6. Ašmonaitė, G. and Almroth, B.C. 2019. Effects of microplastics on organisms and impacts on the environment: Balancing the known and unknown. Technical report by authors at Department of Biological and Environmental Sciences, University of Gothenburg, Sweden, pp: 1-70, https://www.researchgate.net/publication/331257977.
  7. Bandmann, V., Müller, J.D., Köhler, T. and Homann, U. 2012. Uptake of fluorescent nano beads into BY2-cells involves clathrin-dependent and clathrin-independent endocytosis. Federation of European Biochemical Societies letters 586: 3626–3632.https://doi.org/10.1016/j.febslet.2012.08.008.
  8. Bharti, V., Gupta, B. and Kaur, J. 2019. Novel bacterial strains Pseudomonas and Bacillus sp. isolated from petroleum oil contaminated soils for degradation of flourene and phenanthrene. Pollution 5:657–669. https://doi.org/10.22059/POLL.2019.274084.571.
  9. Boots, B., Russell, C.W. and Green, D.S. 2019. Effects of microplastics in soil ecosystems: above and below ground. Environmental Sciences of Technology 53 (19): 11496–11506. https://doi.org/10. 1021/acs.est.9b03304.
  10. Bosker, T., Bouwman, L.J., Brun, N.R., Behrens, P. and Vijver, M.G. 2019. Microplastics accumulate on pores in seed capsule and delay germination and root growth of the terrestrial vascular plant Lepidium sativum. Chemosphere 226: 774–781, doi: 10.1016/j.Chemosphere.2019.03.163.
  11. Bryers, J.D., Jarvis, R.A., Lebo, J., Prudencio, A., Kyriakides, T.R. and Uhrich, K. 2006. Biodegradation of poly (anhydride-esters) into non-steroidal anti-inflammatory drugs and their effect on Pseudomonas aeruginosa biofilms in vitro and on the foreign-body response in vivo. Biomaterials 27(29):5039–5048. doi:10.1016/j.biomaterials.2006.05.034.
  12. Chen, Y., Leng, Y., Liu, X., Wang, J. 2019a. Microplastic pollution in vegetable farmlands of suburb Wuhan, central China. Environmental Pollution, 257: 113449. https://doi.org/10.1016/j.envpol.2019.113449.
  13. Chen, Z., Zhao, W.Q., Xing, R.Z., Xie, S.J., Yang, X.G., Cui, P., Lü, J., Liao, H.P., Yu, Z., Wang, S.H, and Zhou, S.G. 2019b. Enhanced in situ biodegradation of micro-plastics in sewage sludge using hyper-thermophilic composting technology. Journal of Hazardous Materials 384: 121271. https://doi.org/10.1016/j.jhazmat.2019.121271.
  14. Cui, Y., Chen, Y., Liu, X., Dong, S., Tian, Y., Qiao, Y., Mitra, R., Han, J., Li, C., Liu, W. and Chen Q. Computational redesign of a PETase for plastic biodegradation under ambient condition by the GRAPE strategy. ACS (American Chemical Society) Catalysis 11, 1340–1350. https://doi.org/10.1021/acscatal.0c05126.
  15. de Souza Machado, A.A., Lau, C.W., Till, J., Kloas, K., Lehmann, A., Becker, R. and Rillig, M.C. Impacts of microplastics on the soil biophysical environment. Environmental Science of Technology 52: 9656–9665. doi: 10.1021/acs.est.8b02212.
  16. Dong, Y., Gao, M., Song, Z. and Qiu, W. 2019. Microplastic particles increase arsenic toxicity to rice seedlings. Environmental Pollution 259: 1-38. 113892, https://doi.org/10.1016/j.envpol.2019.113892.
  17. FAO, 7 December 2021: https://news.un.org/en/story/2021/12/1107342.
  18. Farquhar, G.D. and Sharkey, T.D. 1982. Stomatal conductance and photosynthesis. Annual Review of Plant Physiology 33: 317-345.
  19. Feng, L.-J., Sun, X.-D., Zhu, F.-P., Feng, Y. Duan, J.-L., Xiao, F. Li, X.-Y., Shi, Y., Wang, Q., and Sun, J.-W. 2020. Nanoplastics promote microcystin synthesis and release from Cyanobacterial Microcystis aeruginosa. Environmental Science and Technology, 54: 3386–3394. doi: 10.1021/acs.est.9b06085.
  20. Furukawa, M., Kawakami, N., Oda, K. and Miyamoto, K. Acceleration of enzymatic degradation of poly(ethylene terephthalate) by surface coating with anionic surfactants. ChemSusChem 11(23): 4018–4025. https://doi.org/10.1002/cssc.201802096.
  21. Gao, M., Liu, Y.and Song, Z. 2019. Effects of polyethylene microplastic on the phytotoxicity of di-n-butyl phthalate in lettuce (Lactuca sativa var. ramosa Hort). Chemosphere, 237: 124482. https://doi.org/10.1016/j.chemosphere.2019.124482.
  22. Geyer, R., Jambeck, J.R. and Law, K.L. 2017. Production, use, and fate of all plastics ever made. Science Advences 3(7):1-6, e1700782. doi: 10.1126/sciadv.1700782.
  23. Giorgetti, L., Spanò, C., Muccifora, S., Bottega, S., Barbieri, F., Bellani, L. and Castiglione, M.R. Exploring the interaction between polystyrene nanoplastics and Allium cepa during germination: Internalization in root cells, induction of toxicity and oxidative stress. Plant Physiology and Biochemistry 149: 170–177. https://doi.org/10.1016/j.plaphy.2020.02.014.
  24. Gonzalez-Fernandez, C, Toullec, J., Lambert, C., Goic, N. L., Seone, M., Moriceau, B., Huvet, A., Berchel, M., Vincent, D., Courcot, L., Soudant, P. and Paul-Pont, I. 2019. Do transparent exopolymeric particles (TEP) affect the toxicity of nanoplastics on Chaetoceros neogracile? Environmenta Polluttion 250: 873–882 https://doi.org/10.1016/j.envpol.2019.04.093.
  25. Gravouil, K., Ferru-Clément, R., Colas, S., Helye, R., Kadri, L., Bourdeau, L., Moumen, B., Mercier, A. and Ferreira, T. 2017. Transcriptomics and lipidomics of the environmental strain rhodococcus ruber point out consumption pathways and potential metabolic bottlenecks for polyethylene degradation. Environmental Science and Technology 51(9): 5172–5181. doi:10.1021/acs.est.7b00846.
  26. Gu, J.D., 2020. Biodegradability of plastics: the issues, recent advances, and future perspectives. Environmental Science and Pollution Research 28 (2): 1278–1282. doi:10.1007/s11356-020-11501-9. 
  27. Guo, X., Hu, G., Fan, X. and Jia, H. 2020. Sorption properties of cadmium on microplastics: The common practice experiment and A two-dimensional correlation spectroscopic study. Ecotoxicology and Environmental Safety. 190: 110- https://doi.org/10.1016/j.ecoenv.2019.110118.
  28. Hsieh, Y., and Cram, L.A. 1998. Enzymatic hydrolysis to improve of wetting and absorbency of polyester fabrics. Textile Research Journal 68 (5): 311-319. doi:10.1177/004051759806800501.
  29. Jaiswal, S. Babita Sharma, B., and Pratyoosh Shukla, P. 2019. Integrated approaches in microbial degradation of Environmental Technology and Innovation 17: 100567 https://doi.org/10.1016/j.eti.2019.100567.
  30. Jiang, X., Chen, H., Liao, Y., Ye, Z., Li, M. and Klobučar, G. 2019. Ecotoxicity and genotoxicity of polystyrene microplastics on higher plant Vicia faba. Environmental Pollution 250: 831–838. doi:10.1016/j.envpol.2019.04.055 
  31. Knott, B.C., Erickson, E., Mark, D., Allen, M.D., Gado, J.E., Graham, R., Kearns, F.L., Pardo, I., Topuzlu, E., Anderson, J.J., Austin, H.P., Dominick, G., Johnson, C.W., Rorrer, N.A., Szostkiewicz, C.J., Copié, V., Payne, C.M., Woodcock, H.L., Donohoe, B.S., Beckham, T. and McGeehan, J.E., 2020. Characterization and engineering of a two-enzyme system for plastics depolymerization. Proceedings of the National Academy of Sciences 117 (41): 25476–25485. doi:10.1073/pnas.2006753117.
  32. Kokare C.R., Chakraborty, S., Khopade, A.N. and Mahadik, K.R. 2009. Biofilm: importance and applications. Indian Journal of Biotechnology 8(2):159–168. http://nopr.niscpr.res.in/handle/123465789/3883.
  33. Larue, C., Sarret, G., Castillo-Michelc, H., Elena Pradas, A. and del Reald, R. 2021. A critical review on the impacts of nanoplastics and microplastics on aquatic and terrestrial photosynthetic organisms. Small 17 (20): 1-28. https://doi.org/10.1002/smll.202005834.
  34. Lear, G., Kingsbury, J.M., Franchini, S., Gambarini, V., Maday, S.D., Wallbank, J.A.,Weaver, L., and Pantos, O. 2021. Plastics and the microbiome: impacts and solutions. Environmental Microbiome 16:2 https://doi.org/10.1186/s40793-020-00371-w.
  35. Lehmann, A., leifheit, E. F., Feng, L., Bergmann, J., Wulfl, A., Rillig, M. C. 2020. Microplastic fiber and drought effects on plants and soil are only slightly modified by arbuscular mycorrhizal fungi. Soil Ecology Letters, This article is published with open access at link.springer.com and journal hep.com.cn, .https://doi.org/10.1007/s42832-020-0060-4.
  36. Leiheit, E.F., Lehman A., Rilling, M.C. 2021. Potential effects of microplastic on arbuscular mycorrhizal fungi. Frontiers in Plant Science 12:1-9 Article number 626709 https://doi.org/10.3389/fpls.2021.626709.
  37. Li, S. and Zho, L. 2020. Influence of polystyrene microplastics on the growth, photosynthetic efficiency and aggregation of freshwater microalgae Chlamydomonas reinhardtii. Science of the Total Environmental 714:1-8., https://doi.org/10.1016/j.scitotenv.2020.136767.
  38. Li, L., Zhou, Q. Yin, N., Tu, C., Luo, Y. 2019. Uptake and accumulation of microplastics in an edible plant. Chinese Science Bulletin, 64: 928–934. doi:1360/N972018-00845.
  39. Long, M., Paul-Pont, I., Hégaret, H., Moriceau, B., Lambert, C. and Huvet, A. Interactions between polystyrene microplastics and marine phytoplankton lead to species-specific hetero-aggregation. Environmental Pollution 228: 454–463. doi: 10.1016/j.envpol.2017.05.047.
  40. Lozano, Y.M., Lehnert, T., Linck, L.T., Lehmann, A., and Rillig, M.C. 2021. Microplastic shape, polymer type, and concentration affect soil properties and plant biomass. Frontiers in Plant Science 12:616645. doi: 10.3389/fpls.2021.616645.
  41. Lu, Y., Ma, Q., Xu., X., Yu, Z., Guo, T. and Wu, Y. 2021. Cytotoxicity and genotoxicity evaluation of polystyrene microplastics on Vicia faba Environmental Pollution, 288: 117821.
  42. Meng, F., Yang, X., Riksen, M., Xu, M., and Geissen, V. 2021. Response of common bean (Phaseolus vulgaris ) growth to soil contaminated with microplastics. Science and Total Environment 755:142516. doi: 10.1016/j.scitotenv.2020.142516.
  43. Nadian, H., Fathi, G., and Abdollahi, M. 2013. Phosphorus Inflow into Two Species of Clover Root with Different Morphology Colonized by AM Fungi. Iran Agricultural Research, 36 (1): 40-54.
  44. Nimchua, T., Eveleigh, D. E., Sangwatanaroj, U. and Punnapayak, H. 2008. Screening of tropical fungi producing polyethylene terephthalate-hydrolyzing enzyme for fabric modification. Journal of International Microbiology and Biotechnology 35:843–850. Doi. 10.1007/s10295-008-0356-3.
  45. Nimchua, T., Punnapayak, H., and Wolfgang Zimmermann, W. Comparison of the hydrolysis of polyethylene terephthalate fibers by a hydrolase from Fusarium oxysporum LCH I and Fusarium solani f. sp. Pisi. Biotechnoloy Journal 2: 361–364 doi.10.1002/biot.200600095.
  46. Ogunbayo, A.O., Olanipekun, O.O. and Adamu, I.A. 2019. Preliminary Studies on the Microbial Degradation of Plastic Waste Using Aspergillus niger and Pseudomonas Journal of Environmental Protection, 10: 625-631. https://doi.org/10.4236/jep.2019.105037.
  47. Orr, I.G., Hadar, Y. and Sivan, A. 2004. Colonization, biofilm formation and biodegradation of polyethylene by a strain of Rhodococcus ruber. Applied Microbioloy and Biotechnology 65(1):97–104. doi: 10.1007/s00253-004-1584-8.
  48. O’Toole, G., Kaplan, H.B. and Kolter, R. 2000. Biofilm formation as microbial development. Annual Review of Microbiology 54(1):49–79. doi:10.1146/annurev.micro.54.1.49.
  49. Pehlivan, N. and Gedik, K. 2021. Particle size-dependent biomolecular footprints of interactive microplastics in maize. Environ.mental Pollution 277: 116772. https://doi.org/10.1016/j.2021.116772
  50. Pignattelli, S., Broccoli, A., Piccardo, M., Terlizzi, A. and Renzi, M. 2021a. Effects of polyethylene terephthalate (PET) microplastics and acid rain on physiology and growth of Lepidium sativum. Environmental Pollution 282: 116997. https://doi.org/10.1016/j.envpol. 2021.116997.
  51. Pignattelli, S., Broccoli, A., Piccardo, M., Felline, S., Terlizzi, A. and Renzi, M. 2021b. Short-term physiological and biometrical responses of Lepidium sativum seedlings exposed to PET-made microplastics and acid rain. Ecotoxicology and Environmental Saftey 208: 111718. https://doi.org/10.1016/j.ecoenv.2020.111718.
  52. Poerio, T., Piacentini, E. and Mazzei, R. 2019. Membrane processes for micro-plastic removal. Molecules 24 (22): 4148. doi: 10.3390/molecules24224148.
  53. Prakash B, Veeregowda, B.M. and Krishnappa, G. 2003. Biofilms: a survival strategy of bacteria. Current Science 85(9):1299–1307. https://www.jstor.org/stable/24108133.
  54. Priya, A., Dutta, K.and Daverey, A. 2021. A comprehensive biotechnological and molecular insight into plastic degradation by microbial community. Journal of Chemical Technology and Biotechnoloy 97 (2): 381-397. https://doi.org/10.1002/jctb.6675.
  55. Purohit, J., Chattopadhyay, A. and Teli, B. 2020. Metagenomic exploration of plastic degrading microbes for biotechnological application. Current Genomics. 21 (4): 253–270.
  56. Ragaert, K., Delva, L. and Van Geem, K. 2017. Mechanical and chemical recycling of solid plastic waste. Waste Management 69: 24–58. doi: 10.2174/1389202921999200525155711.
  57. Rehse, S., Kloas, W. and Zarfl, C. 2016. Short-term exposure with high concentrations of pristine microplastic particles leads to immobilisation of daphnia magna. Chemosphere 153:91–99. doi:10.1016/j.chemosphere.2016.02.133.
  58. Ren, X., Tang, J.,Wang, L. and Liu, Q. 2021. Microplastics in soil-plant system: effects of nano/microplastics on plant photosynthesis, rhizosphere microbes and soil properties in soil with different residues. Plant and Soil 462 (1): 561–576. https://doi.org/10.1007/ s11104-021-04869-1.
  59. Renzella, J., Townsend, N., Jewell, J., Breda, J., Roberts, N., Rayner, M. and Wickramasinghe, K. 2018. What national and subnational interventions and policies based on mediterranean and nordic diets are recommended or implemented in the WHO European region and is there evidence of effectiveness in reducing noncommunicable diseases, World Health Organization, Regional Office for Europe: Health Evidence Network Synthesis Report, No. 58, Copenhagen, Denmark. https://apps.who.int/iris/handle/10665/326264.
  60. Roberts, C., Edwards, S., Vague, M., León- Zayas, R., Scheffer, H., Chan, G., Swartz N.A. and Mellies, J.L. 2020. Environmental consortium containing Pseudomonas and Bacillus species synergistically degrades polyethylene terephthalate plastic. mSphere 5 (6):e01151-20. https://doi.org/10.1128/mSphere.01151-20.
  61. Rochman, C., Browne, M., Halpern, B., Hentschel, B., Hoh, E., Karapanagioti, H., Rios-Mendoza, L., Takada, H., Teh, Swee, T. and Thompson, R. 2013. Policy: classify plastic waste as hazardous. Nature. 494: 169-171. doi:10.1038/494169a.
  62. Rossi, G., Barnoud, J., and Monticelli, L. 2014. Polystyrene nanoparticles perturb lipid membranes. The Journal of Physical Chemical Letters. 5 (1): 241–246. https://doi.org/10.1021/jz402234c.
  63. Seeley, M.E., Song, B., Passie, R. and Hale, R.C. 2020. Microplastics affect sedimentary microbial communities and nitrogen cycling. Nature Communication 11: 2372. doi:10.1038/s41467-020-16235-3.
  64. Shirke, A.N., White, C., Englarender, J.C., Zwarycz, A., Butterfoss, G.L., Linhardt, R.G., Gross, R.A. 2018. Stabilizing Leaf and Branch Compost Cutinase (LCC) with Glycosylation: Mechanism and effect on PET hydrolysis. Biochemistry 57 (7): 1190–1200, https://doi.org/10.1021/acs.biochem.7b01189.
  65. Simoes, M., Simoes, L.C. and Vieira, M.J. 2010. A review of current and emergent biofilm control strategies. LWT-Food Science Technology 43(4):573–583. https://doi.org/10.1016/j.lwt.2009.12.008.
  66. Sivan, A., Szanto, M. and Pavlov, V. 2006. Biofilm development of the polyethylene degrading bacterium Rhodococcus ruber. Applied Microbiology and Biotechnology 72(2): 346–352. doi: 10.1007/s00253-005-0259-4.
  67. Sjollema, S.B., Redondo-Hasselerharm, P., Leslie, H.A., Kraak, M.H.S., Vethaak, A.D. 2015. Do plastic particles affect microalgal photosynthesis and growth?. Aquatic Toxicology, 170: 259–261doi:10.1016/j.aquatox.2015.12.002.
  68. Skariyachan, S., Taskeen, N., Preethi Kishore, A. and Venkata Krishna, B. 2022. Recent advances in plastic degradation – From microbial consortia-based methods to data sciences and computational biology driven approaches. Journal of Hazardous Materials, 426 128086, https://doi.org/10.1016/j.jhazmat.2021.128086.
  69. Skariyachan, S., Manjunath, M., Shankar, A., Bachappanavar, N. and Patil, A. A. 2018. Application of novel microbial consortia for environmental site remediation and hazardous waste management toward low- and high-density polyethylene and prioritizing the cost-effective, eco-friendly, and sustainable biotechnological intervention. Handbook of Environmental Materials Management, Chapert 9, 431-478. doi: 10.1007/978-3-319-73645-7_9.
  70. Son, H.F., Cho, I.J., Joo, S., Seo, H., Sagong, H., Choi, S.Y., Lee, S. Y. and Kim, K. J. 2019. Rational protein engineering of thermo-stable PETase from Ideonella sakaiensis for highly efficient PETdegradation. Americam Chemical Society Catalysis, 3519-3526, doi: 10.1021/acscatal.9b00568.
  71. Sridharan, S., Kumar, M., Bolan, N.S., Singh, L., Kumar, S., Kumar, R. and You, S. 2021. Are micro-plastics destabilizing the global network of terrestrial and aquatic ecosystem services? Environmenta Research 198: 111243. https://doi.org/10.1016/j.envres.2021.111243.
  72. Sudhakar, M., Priyadarshini, C., Doble, M., Murthy, P.S. and Venkatesan, R. 2007. Marine bacteria mediated degradation of nylon 66 and 6. International Biodeterioration and Biodegradation 60 (3): 144–151. doi:1016/j.ibiod.2007.02.002.
  73. Sulaiman, S., You, D.-J., Kanaya, E., Koga, Y., and Kanaya, S. 2014. Crystal structure and thermodynamic and kinetic stability of metagenome-derived LC-cutinase. Biochemistry 53 (11): 1858− doi: 10.1021/bi401561p.
  74. Sun, X.-D., Yuan, X.-Z., Jia, Y., Feng, L.-J., Zhu, F.-P., Dong, S.-S., Liu, J., Kong, X., Tian, H. Duan, J.-L., Ding, Z., Wang, S.-G. and Xing, B. 2020. Differentially charged nanoplastics demonstrate distinct accumulation in Arabidopsis thaliana. Nature Nanotechnology 15 (9), 755–760. https://doi.org/10.1038/s41565-020-0707-4.
  75. Taha, Z.D., Amin, R.M., Anuar, S.T., Nasser, A. and Sohaimi, E.S. 2021. Micro-plastics in seawater and zooplankton: a case study from Terengganu estuary and offshore waters, Science of the Total Environment, 786: 147466. doi:10.1016/j.scitotenv.2021.147466.  
  76. Taniguchi, I., Yoshida, S., Hiraga, K., Kenji Miyamoto, K., Kimura, Y. and Oda, K. 2019. Biodegradation of PET: Current Status and Application Aspects. American Chemical Society Catalysis 9: 4089−4105.
  77. Tiwari, N., Santhiya, D. and Sharma, J.G. 2020. Microbial remediation of micro-nano plastics: current knowledge and future trends. Environmental Pollution Journal 265: 115044. https://doi.org/10.1016/j.envpol.2020.115044.
  78. Tournier, V., Topham, C.M., Gilles, A., David, B., Folgoas, C., Moya-Leclair1, E., Kamionka, E., Desrousseaux, M-L., Texier1, H., Gavalda, S., Cot, M., Guémard, E., Dalibey, M., Nomme, J., Cioci1, G., Barbe, S., Chateau, M., André, I., Duquesne, S. and Marty, A. 2020. An engineered PET depolymerase to break down and recycle plastic bottles, Nature 580: 216-219, https://doi.org/10.1038/s41586-020-2149-4.
  79. Tribedi, P. and Sil, A.K. 2013. Low-density polyethylene degradation by Pseudomonas AKS2 biofilm. Environmental Science and Pollution Research 20(6):4146–4153. doi: 10.1007/s11356-012-1378-y.
  80. Uheida, A., Mejía, H.G., Abdel-Rehim, M., Hamd, W. and Dutta, J. 2021. Visible light photocatalytic degradation of polypropylene micro-plastics in a continuous water flow system. Journal of Hazardous Materials, 406: 124299. doi: 1016/j.jhazmat.2020.124299.
  81. Urbanek, A.K., Rymowicz, W. and Mirończuk, A.M. 2018. Degradation of plastics and plastic degrading bacteria in cold marine habitats. Applied Microbiology and Biotechnology 102: 7669–7678. doi: 1007/s00253-018-9195-y.
  82. Wang, H.T., Ding, J., Xiong, C., Zhu, D., Li, G., Jia, X.Y., Zhu, Y.G. and Xue, X.M. 2019. Exposure to microplastics lowers arsenic accumulation and alters gut bacterial communities of earthworm Metaphire californica. Environmental Pollution 251: 110–116. doi: 10.1016/j.envpol.2019.04.054.
  83. Wang, F., Zhang, X., Zhang, S. and Sun, Y. 2020. Interactions of microplastics and cadmium on plant growth and arbuscular mycorrhizal fungal communities in an agricultural soil. Chemosphere 254: 126791. https://doi.org/10.1016/j.Chemosphere. 2020.126791.
  84. Wu, X., Lu, J., Du, M., Xu, X., Beiyuan, J., Sarkar, B., Bolan, N., Xu,W., Xu, S., Chen, X., Wu, F. and Wang, H. 2021. Particulate plastics-plant interaction in soil and its implications: a review. Science of the Total Environment 792: 148337. https://doi.org/10.1016/j.scitotenv.2021.148337.
  85. Wu, Y., Guo, P., Zhang, X., Zhang, Y., Xie, S. and Deng, J. 2019. Effect of microplastics exposure on the photosynthesis system of freshwater algae. Journal of Hazardous Materials 374: 219–227. doi: 10.1016/j.jhazmat.2019.04.039.
  86. Xiao, Y., Jiang, X., Liao Y., Zhao, W., Zhao, P. and Li, M. 2020. Adverse physiological and molecular level effects of polystyrene microplastics on freshwater microalgae. Chemosphere 255:126914 https://doi.org/10.1016/j.chemosphere.2020.126914.
  87. Xu, Y., He, Q., Liu, C. and Huangfu, X. 2019. Are micro-or nanoplastics leached from Drinking water distribution systems? Environmental Science and Technology 53: 9339−9340, American Chemical Society Publications, doi: 10.1021/acs.est.9b03673.
  88. Xu, Z., Xiong, X., Zhao, Y., Xiang, W. and Wu, C. 2020. Pollutants delivered every day: phthalates in plastic express packaging bags and their leaching potential. Journal Hazardous Materials 384: 121282. doi:10.1016/j.jhazmat.2019.121282. 
  89. Yang, D., Cho, J.S., Choi, K.R., Kim, H.U. and Lee, S.Y. 2017. Systems metabolic engineering as an enabling technology in accomplishing sustainable development goals. Microbial Biotechnology 10 (5): 1254–1258. https://doi.org/10.1111/1751-7915.12766.
  90. Yoshida, S., Hiraga, K., Takehana, T., Taniguchi, I., Yamaji, H., Maeda, Y., Toyohara, K., Miyamoto, K., Kimura, Y. and Oda, K. 2016. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 351 (6278): 1196− doi: 10.1126/science.aad6359.
  91. Yuan, J., Ma, J., Sun, Y., Zhou, T., Zhao, Y. and Yu, F. Microbial degradation and other environmental aspects of microplastics/plastics. Science of the Total Environment, 715: 136968. https://doi.org/10.1016/j.scitotenv.2020.136968.
  92. Yuan,W., Zhou, Y., Liu, X. and Wang, J. 2019. New perspective on the nanoplastics disrupting the reproduction of an endangered fern in artificial freshwater. Environmental Science and Technology 53 (21): 12715–12724. https://doi.org/10.1021/acs.est.9b02882.
  93. Yu, H., Peng, J., Cao, X.,Wang, Y., Zhang, Z., Xu, Y. and Qi, W. 2021. Effects of microplastics and glyphosate on growth rate, morphological plasticity, photosynthesis, and oxidative stress in the aquatic species Salvinia cucullata. Environmental Pollution 279: 116900. https:// doi.org/10.1016/j.envpol.2021.116900.
  94. Yu, Z., Tang, J., Liao, H., Liu, X., Zhou, P., Chen, Z., Rensing, C. and Zhou, S. 2018. The distinctive microbial community improves composting efficiency in a full-scale hyperthermophilic composting plant. Bioresource Technology 265: 146-154. https://doi.org/10.1016/j.biortech.2018.06.011.
  95. Zang, H., Zhou, J., Marshall, M.R., Chadwick, D.R., Wen, Y. and Jones, D.L. 2020. Microplastics in the agroecosystem: are they an emerging threat to the plant-soil system? Soil Biology and Biochemistry 148: 107926, https://doi.org/10.1016/j.soilbio.2020.107926.
  96. Zhang, C., Chen, X., Wang, J., and Tan, L. 2016. Toxic effects of microplastic on marine microalgae Skeletonema costatum: interactions between microplastic and algae. Environmental Pollution 220: 1282–1288. doi: 10.1016/j.envpol.2016. 005.
  97. Zhao, T., Tan, L., Huang, W., and Wang, J. 2019. The interactions between micro polyvinyl chloride and marine dinoflagellate Karenia mikimotoi: The inhibition of growth, chlorophyll and photosynthetic efficiency. Environmental Pollution, 24: 883 889.doi:10.1016/j.envpol.2019.01.114.
  98. Zhou, P., Adeel, M., Shakoor, N., Guo, M., Hao, Y., Azeem, I., Li, M., Liu, M. and Rui, Y. 2021. Application of Nanoparticles Alleviates Heavy Metals Stress and Promotes Plant Growth: An Overview. Nanomaterials 11(1):26.doi: 10.3390/nano11010026.
  99. Zhou , J., Wena,Y., Marshall, M.R., Heng Gui, H., Yang, Y., Zeng, Z., Davey, L., Jones, D.L. and Zang, H. 2021. Microplastics as an emerging threat to plant and soil health in agroecosystems. Science of the Total Environment 787: 147444. https://doi.org/10.1016/j.scitotenv.2021.147444.