جداسازی باکتری های آزاد کننده فسفر در استخر پرورش ماهی با بکارگیری منابع مختلف فسفر نامحلول

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد گروه علوم و مهندسی شیلات، دانشکده منابع طبیعی و علوم دریایی دانشگاه تربیت مدرس، نور، ایران

2 استادیار گروه علوم و مهندسی شیلات، دانشکده منابع طبیعی و علوم دریایی دانشگاه تربیت مدرس، نور، ایران

3 دانشیار موسسه تحقیقات خاک و آب کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

چکیده

یکی از مهمترین دلایل کارایی ضعیف کودهای زیستی فسفاته در استخرهای پرورش ماهیان، عدم توجه به نوع فسفر نامحلول غالب در محیط پرورشی و استفاده صرفاً از یک منبع (غالباً تری­کلسیم فسفات) در فرآیند جداسازی و ارزیابی ریز­جانداران آزادکننده فسفر می­باشد. بخش بزرگی از فسفر نامحلول موجود در استخرهای پرورش ماهیان گرمابی از نوع فسفر آلی نامحلول (50 تا 90 درصد) است. بنابراین، به نظر می­رسد ریز جانداران آزادکننده فسفر جداسازی شده صرفاً از منبع فسفر معدنی نتوانند در قالب کود زیستی در استخرهای پرورشی اثرگذار باشند. هدف از این مطالعه، جداسازی باکتری­های آزادکننده فسفر از استخرهای پرورش ماهیان گرمابی با استفاده از محیط کشت NBRIP حاوی منبع فسفر آلی (فیتات کلسیم) و مقایسه عملکرد آنها با باکتری­های حاصل از منبع فسفر معدنی نامحلول (تری­کلسیم فسفات) در شرایط میکروکازم (ارلن حاوی رسوب: شرایط نسبتاً مشابه با استخر پرورشی) می­باشد. توانایی جدایه­ها (33 جدایه از منبع آلی و 19 جدایه از منبع معدنی) در انحلال فسفر در محیط کشت جامد و مایع مورد ارزیابی قرار گرفت. میزان فسفر محلول در محیط­کشت مایع حاوی فیتات کلسیم بین 93/141-40/57 میلی­گرم در لیتر و در محیط­کشت حاوی تری­کلسیم فسفات بین 49/219-16/108 میلی­گرم در لیتر بود. در مرحله نهایی، نتایج ارزیابی جدایه­ها در میکروکازم رسوب نشان داد که سه جدایه حاصل از منبع فسفر آلی (3P، 13P و 2P) بهترین جدایه­های آزادکننده فسفر بودند (به ترتیب با آزادسازی فسفر 86/11، 53/12 و 18/28 میلی­گرم در لیتر) و در مقایسه با جدایه­های حاصل از منبع فسفر معدنی عملکرد بهتری داشتند. شناسایی مولکولی این جدایه­ها مشخص کرد که این سویه­ها متعلق به سه باکتری Priestia aryabhattai، Bacillus zanthoxyli و Acinetobacter johnsonii می­باشند. با توجه به پتانسیل بیماریزایی A. johnsonii برای ماهی و انسان، سویه­های خانواده Bacillaceae را می­توان به­عنوان کاندیدای استفاده در کودهای زیستی برای ارزیابی­های تکمیلی آینده در نظر گرفت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of different insoluble phosphorus sources to isolate phosphorus-releasing bacteria in fish ponds

نویسندگان [English]

  • vahed Arjmand 1
  • nemat mahmoudi 2
  • ali reza Fallah 3
1 Graduate of the Aquaculture Department, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Iran
2 Assistance professor of Aquaculture Department, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Iran
3 Associate Professor of Soil and Water Research Institute (SWRI), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
چکیده [English]

One of the main reasons for the low yield of biofertilizers in fish ponds is the use of insoluble mineral phosphorus sources (often tri-calcium phosphate) during the process of isolation and evaluation of phosphorus-releasing microorganisms. A large part of insoluble phosphorus (50 to 90%) in warm water fish ponds is insoluble organic phosphorus. Therefore, it seems phosphorus-releasing microorganisms isolated solely from mineral phosphorus sources can not be effective as biofertilizers in warm water fish ponds. The aim of this study was to isolate phosphorus-releasing bacteria from warm water fish ponds using NBRIP medium containing organic phosphorus source (calcium phytate) and compare their performance with bacteria derived from insoluble mineral phosphorus source (tri-calcium phosphate) in microcosm conditions (Erlenmeyer contains sediment: conditions similar to a fish pond). The phosphorus release ability of isolates (33 organic isolates and 19 inorganic isolates) was evaluated in NBRIP solid and liquid medium. The range of soluble phosphorus in the liquid medium containing calcium phytate varied between 57.40 - 141.93 and 108.16 - 219.49 mg/l in the medium containing tricalcium phosphate. In the final step, evaluation of isolates in sediment microcosm showed that three isolates from organic phosphorus source (3P, 13P, and 2P) were the best phosphorus release isolates (with 11.86, 12.53, and 28.18 mg / l respectively) and had better performance compared to isolates from mineral phosphorus source. Molecular identification showed these isolates belonged to priestia aryabhattai, Bacillus zanthoxyli, and Acinetobacter johnsonii. Due to the pathogenic potential of A. johnsonii for fish and humans, the Bacillaceae family strains can be considered candidates for use in biofertilizers for further evaluation.

کلیدواژه‌ها [English]

  • Biofertilizer
  • Organic phosphorus solubilization
  • Sediment microcosm
  • Phytate
  • Warm water fish
  1. آرمنده، م.، محمودی، ن. و فلاح نصرت آباد، ع. 1397. جداسازی و شناسایی باکتری‌های حل کننده فسفات از مزارع پرورش ماهیان گرمابی به عنوان کاندیدای کود زیستی فسفر. نشریه علمی فیزیولوژی و بیوتکنولوژی آبزیان. 6(4): 121-140
  2. Antoun, H., 2012. Beneficial microorganisms for the sustainable use of phosphates in agriculture. Procedia Engineering, 46, pp.62-67.
  3. Austin, B. and Austin, D.A., 2012. Vibrionaceae representatives. Bacterial fish pathogens (pp. 357-411). Springer, Dordrecht.
  4. 4Avila-Segura, M., Lyne, J.W., Meyer, J.M. and Barak, P., 2004. Rapid spectrophotometric analysis of soil phosphorus with a microplate reader. Communications in Soil Science and Plant Analysis, 35(3-4), pp.547-557.
  5. Bai, X., Ding, S., Fan, C., Liu, T., Shi, D. and Zhang, L., 2009. Organic phosphorus species in surface sediments of a large, shallow, eutrophic lake, Lake Taihu, China. Environmental Pollution, 157(8-9), pp.2507-2513.
  6. Bashan, Y., Kamnev, A. A. and de-Bashan, L. E. 2013. Tricalcium phosphate is inappropriate as a universal selection factor for isolating and testing phosphate-solubilizing bacteria that enhance plant growth: a proposal for an alternative procedure. Biology and Fertility of Soils, 49 (4), 465-479.
  7. Behera, B.C., Singdevsachan, S.K., Mishra, R.R., Dutta, S.K. and Thatoi, H.N., 2014. Diversity, mechanism and biotechnology of phosphate solubilising microorganism in mangrove—a review. Biocatalysis and Agricultural Biotechnology, 3(2), pp.97-110.
  8. Cao, Y., Fu, D., Liu, T., Guo, G. and Hu, Z. 2018. Phosphorus solubilizing and releasing bacteria screening from the rhizosphere in a natural wetland. Water, 10 (2), 195.
  9. Chen, J., Lu, S., Zhao, Y., Wang, W. and Huang, M. 2011. Effects of overlying water aeration on phosphorus fractions and alkaline phosphatase activity in surface sediment. Journal of Environmental Sciences, 23 (2), 206-211.
  10. Collavino, M.M., Sansberro, P.A., Mroginski, L.A. and Aguilar, O.M., 2010. Comparison of in vitro solubilization activity of diverse phosphate-solubilizing bacteria native to acid soil and their ability to promote Phaseolus vulgaris growth. Biology and Fertility of Soils, 46(7), pp.727-738.
  11. FAO, Food and Agriculture Organization of the United Nations (2017) Major bacterial diseases affecting aquaculture. Aquatic AMR Workshop, Mangalore, India. http://www.fao.org/fi/static-media/MeetingDocuments/WorkshopAMR/presentations/07_Haenen .pdf.
  12. 2020. The State of World Fisheries and Aquaculture. 2020. Sustainability in Action. Rome. https://doi.org/10.4060/ca9229en
  13. Gächter, R. and Meyer, J.S., 1993. The role of microorganisms in mobilization and fixation of phosphorus in sediments. In Proceedings of the Third International Workshop on Phosphorus in Sediments (pp. 103-121). Springer, Dordrecht.
  14. Hlordzi, V., Kuebutornye, F.K., Afriyie, G., Abarike, E.D., Lu, Y., Chi, S. and Anokyewaa, M.A., 2020. The use of Bacillus species in maintenance of water quality in aquaculture: A review. Aquaculture Reports, 18, p.100503.
  15. Hu, X. J., Li, Z. J., Cao, Y. C., Zhang, J., Gong, Y. X. and Yang, Y. F. 2010. Isolation and identification of a phosphate-solubilizing bacterium Pantoea stewartii subsp. stewartii g6, and effects of temperature, salinity, and pH on its growth under indoor culture conditions. Aquaculture International, 18(6), 1079-1091.
  16. Illmer, P. and Schinner, F., 1995. Solubilization of inorganic calcium phosphates solubilization mechanisms. Soil Biology and Biochemistry, 27(3), pp.257-263.
  17. Jana, B. B. 2007. Distribution pattern and role of phosphate solubilizing bacteria in the enhancement of fertilizer value of rock phosphate in aquaculture ponds: state-of-the-art. In First International Meeting on Microbial Phosphate Solubilization (pp. 229-238). Springer Netherlands.
  18. Khan, M. S., Zaidi, A. and Wani, P. A. 2007. Role of phosphate-solubilizing microorganisms in sustainable agriculture a review. Agronomy for Sustainable Development, 27 (1), 29-43.
  19. Kim, C. H., Han, S. H., Kim, K. Y., Cho, B. H., Kim, Y. H., Koo, B. S. and Kim, Y. C. 2003. Cloning and expression of pyrroloquinoline quinone (PQQ) genes from a phosphate-solubilizing bacterium Enterobacter intermedium. Current Microbiology, 47 (6), 457-461.
  20. Kozińska, A., Paździor, E., Pękala, A. and Niemczuk, W., 2014. Acinetobacter johnsonii and Acinetobacter lwoffii-the emerging fish pathogens. Bulletin of the Veterinary Institute in Pulawy, 58(2), pp.193-199.
  21. Li, Y. and Boyd, C.E., 2016. Laboratory tests of bacterial amendments for accelerating oxidation rates of ammonia, nitrite and organic matter in aquaculture pond water. Aquaculture, 460, pp.45-58.
  22. Li, Y., Zhang, J., Zhang, J., Xu, W. and Mou, Z., 2019. Characteristics of inorganic phosphate-solubilizing bacteria from the sediments of a eutrophic lake. International Journal of Environmental Research and Public Health, 16(12), p.2141.
  23. Li, X.M., Zhu, Y.J., Ringo, E. and Yang, D., 2020. Prevalence of Aeromonas hydrophila and Pseudomonas fluorescens and factors influencing them in different freshwater fish ponds. Iranian Journal of Fisheries Sciences, 19(1), pp.111-124.
  24. Lio-Po, G.D. and Lim, L.S., 2014. Infectious diseases of warmwater fish in fresh water. Diseases and disorders of finfish in cage culture. 2nd edition. Wallingford and. Boston: CAB International, pp.193-253.
  25. Liu, Z., Li, Y.C., Zhang, S., Fu, Y., Fan, X., Patel, J.S. and Zhang, M., 2015. Characterization of phosphate-solubilizing bacteria isolated from calcareous soils. Applied Soil Ecology, 96, pp.217-224.
  26. Maitra, N., Manna, S.K., Samanta, S., Sarkar, K., Debnath, D., Bandopadhyay, C., Sahu, S.K. and Sharma, A.P., 2015. Ecological significance and phosphorus release potential of phosphate solubilizing bacteria in freshwater ecosystems. Hydrobiologia, 745(1), pp.69-83.
  27. Mehta, S., and Nautiyal, C. S. 2001. An efficient method for qualitative screening of phosphate-solubilizing bacteria. Current Microbiology, 43 (1), 51-56.
  28. Montaña, S., Schramm, S.T., Traglia, G.M., Chiem, K., Parmeciano Di Noto, G., Almuzara, M., Barberis, C., Vay, C., Quiroga, C., Tolmasky, M.E. and Iriarte, A., 2016. The genetic analysis of an Acinetobacter johnsonii clinical strain evidenced the presence of horizontal genetic transfer. PLoS One, 11(8), p.e0161528.
  29. Nautiyal, C. S. 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiology Letters, 170 (1), 265-270.
  30. Premono, M.E., Moawad, A.M. and Vlek, P.L.G., 1996. Effect of phosphate-solubilizing Pseudomonas putida on the growth of maize and its survival in the rhizosphere (No. REP-12113. CIMMYT.).
  31. Rice, E. W., Baird, R. B., Eaton, A. D. and Clesceri, L. S. 2012. Standard methods for the examination of water and wastewater. American Public Health Association: Washington, DC, USA, 10.
  32. Sharma, S.B., Sayyed, R.Z., Trivedi, M.H. and Gobi, T.A., 2013. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springer Plus, 2(1), pp.1-14.
  33. Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30(12), pp.2725-2729.
  34. Tao, G. C., Tian, S. J., Cai, M. Y. and Xie, G. H. 2008. Phosphate-solubilizing and -mineralizing abilities of bacteria isolated from soils. Pedosphere. 18(4): 515–523.
  35. Weisburg, W. G., Barns, S. M., Pelletier, D. A. and Lane, D. J. 1991. 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173(2), 697-703.
  36. Gen-Fu, W. and Xue-Ping, Z., 2005. Characterization of phosphorus-releasing bacteria in a small eutrophic shallow lake, Eastern China. Water Research, 39(19), pp.4623-4632.
  37. Yang, L., Liu, Y., Cao, X., Zhou, Z., Wang, S., Xiao, J., Song, C. and Zhou, Y., 2017. Community composition specificity and potential role of phosphorus solubilizing bacteria attached on the different bloom-forming cyanobacteria. Microbiological Research, 205, pp.59-65.